Mini Shell
# Copyright 2015 PLUMgrid
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
try:
from collections.abc import MutableMapping
except ImportError:
from collections import MutableMapping
from time import strftime
import ctypes as ct
from functools import reduce
import os
import errno
import re
import sys
from .libbcc import lib, _RAW_CB_TYPE, _LOST_CB_TYPE, _RINGBUF_CB_TYPE, bcc_perf_buffer_opts
from .utils import get_online_cpus
from .utils import get_possible_cpus
BPF_MAP_TYPE_HASH = 1
BPF_MAP_TYPE_ARRAY = 2
BPF_MAP_TYPE_PROG_ARRAY = 3
BPF_MAP_TYPE_PERF_EVENT_ARRAY = 4
BPF_MAP_TYPE_PERCPU_HASH = 5
BPF_MAP_TYPE_PERCPU_ARRAY = 6
BPF_MAP_TYPE_STACK_TRACE = 7
BPF_MAP_TYPE_CGROUP_ARRAY = 8
BPF_MAP_TYPE_LRU_HASH = 9
BPF_MAP_TYPE_LRU_PERCPU_HASH = 10
BPF_MAP_TYPE_LPM_TRIE = 11
BPF_MAP_TYPE_ARRAY_OF_MAPS = 12
BPF_MAP_TYPE_HASH_OF_MAPS = 13
BPF_MAP_TYPE_DEVMAP = 14
BPF_MAP_TYPE_SOCKMAP = 15
BPF_MAP_TYPE_CPUMAP = 16
BPF_MAP_TYPE_XSKMAP = 17
BPF_MAP_TYPE_SOCKHASH = 18
BPF_MAP_TYPE_CGROUP_STORAGE = 19
BPF_MAP_TYPE_REUSEPORT_SOCKARRAY = 20
BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE = 21
BPF_MAP_TYPE_QUEUE = 22
BPF_MAP_TYPE_STACK = 23
BPF_MAP_TYPE_SK_STORAGE = 24
BPF_MAP_TYPE_DEVMAP_HASH = 25
BPF_MAP_TYPE_STRUCT_OPS = 26
BPF_MAP_TYPE_RINGBUF = 27
BPF_MAP_TYPE_INODE_STORAGE = 28
BPF_MAP_TYPE_TASK_STORAGE = 29
map_type_name = {
BPF_MAP_TYPE_HASH: "HASH",
BPF_MAP_TYPE_ARRAY: "ARRAY",
BPF_MAP_TYPE_PROG_ARRAY: "PROG_ARRAY",
BPF_MAP_TYPE_PERF_EVENT_ARRAY: "PERF_EVENT_ARRAY",
BPF_MAP_TYPE_PERCPU_HASH: "PERCPU_HASH",
BPF_MAP_TYPE_PERCPU_ARRAY: "PERCPU_ARRAY",
BPF_MAP_TYPE_STACK_TRACE: "STACK_TRACE",
BPF_MAP_TYPE_CGROUP_ARRAY: "CGROUP_ARRAY",
BPF_MAP_TYPE_LRU_HASH: "LRU_HASH",
BPF_MAP_TYPE_LRU_PERCPU_HASH: "LRU_PERCPU_HASH",
BPF_MAP_TYPE_LPM_TRIE: "LPM_TRIE",
BPF_MAP_TYPE_ARRAY_OF_MAPS: "ARRAY_OF_MAPS",
BPF_MAP_TYPE_HASH_OF_MAPS: "HASH_OF_MAPS",
BPF_MAP_TYPE_DEVMAP: "DEVMAP",
BPF_MAP_TYPE_SOCKMAP: "SOCKMAP",
BPF_MAP_TYPE_CPUMAP: "CPUMAP",
BPF_MAP_TYPE_XSKMAP: "XSKMAP",
BPF_MAP_TYPE_SOCKHASH: "SOCKHASH",
BPF_MAP_TYPE_CGROUP_STORAGE: "CGROUP_STORAGE",
BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: "REUSEPORT_SOCKARRAY",
BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: "PERCPU_CGROUP_STORAGE",
BPF_MAP_TYPE_QUEUE: "QUEUE",
BPF_MAP_TYPE_STACK: "STACK",
BPF_MAP_TYPE_SK_STORAGE: "SK_STORAGE",
BPF_MAP_TYPE_DEVMAP_HASH: "DEVMAP_HASH",
BPF_MAP_TYPE_STRUCT_OPS: "STRUCT_OPS",
BPF_MAP_TYPE_RINGBUF: "RINGBUF",
BPF_MAP_TYPE_INODE_STORAGE: "INODE_STORAGE",
BPF_MAP_TYPE_TASK_STORAGE: "TASK_STORAGE",
}
stars_max = 40
log2_index_max = 65
linear_index_max = 1025
# helper functions, consider moving these to a utils module
def _stars(val, val_max, width):
i = 0
text = ""
while (1):
if (i > (width * val / val_max) - 1) or (i > width - 1):
break
text += "*"
i += 1
if val > val_max:
text = text[:-1] + "+"
return text
def _print_json_hist(vals, val_type, section_bucket=None):
hist_list = []
max_nonzero_idx = 0
for i in range(len(vals)):
if vals[i] != 0:
max_nonzero_idx = i
index = 1
prev = 0
for i in range(len(vals)):
if i != 0 and i <= max_nonzero_idx:
index = index * 2
list_obj = {}
list_obj['interval-start'] = prev
list_obj['interval-end'] = int(index) - 1
list_obj['count'] = int(vals[i])
hist_list.append(list_obj)
prev = index
histogram = {"ts": strftime("%Y-%m-%d %H:%M:%S"), "val_type": val_type, "data": hist_list}
if section_bucket:
histogram[section_bucket[0]] = section_bucket[1]
print(histogram)
def _print_log2_hist(vals, val_type, strip_leading_zero):
global stars_max
log2_dist_max = 64
idx_max = -1
val_max = 0
for i, v in enumerate(vals):
if v > 0: idx_max = i
if v > val_max: val_max = v
if idx_max <= 32:
header = " %-19s : count distribution"
body = "%10d -> %-10d : %-8d |%-*s|"
stars = stars_max
else:
header = " %-29s : count distribution"
body = "%20d -> %-20d : %-8d |%-*s|"
stars = int(stars_max / 2)
if idx_max > 0:
print(header % val_type)
for i in range(1, idx_max + 1):
low = (1 << i) >> 1
high = (1 << i) - 1
if (low == high):
low -= 1
val = vals[i]
if strip_leading_zero:
if val:
print(body % (low, high, val, stars,
_stars(val, val_max, stars)))
strip_leading_zero = False
else:
print(body % (low, high, val, stars,
_stars(val, val_max, stars)))
def _print_linear_hist(vals, val_type, strip_leading_zero):
global stars_max
log2_dist_max = 64
idx_max = -1
val_max = 0
for i, v in enumerate(vals):
if v > 0: idx_max = i
if v > val_max: val_max = v
header = " %-13s : count distribution"
body = " %-10d : %-8d |%-*s|"
stars = stars_max
if idx_max >= 0:
print(header % val_type)
for i in range(0, idx_max + 1):
val = vals[i]
if strip_leading_zero:
if val:
print(body % (i, val, stars,
_stars(val, val_max, stars)))
strip_leading_zero = False
else:
print(body % (i, val, stars,
_stars(val, val_max, stars)))
def get_table_type_name(ttype):
try:
return map_type_name[ttype]
except KeyError:
return "<unknown>"
def _get_event_class(event_map):
ct_mapping = {
'char' : ct.c_char,
's8' : ct.c_char,
'unsigned char' : ct.c_ubyte,
'u8' : ct.c_ubyte,
'u8 *' : ct.c_char_p,
'char *' : ct.c_char_p,
'short' : ct.c_short,
's16' : ct.c_short,
'unsigned short' : ct.c_ushort,
'u16' : ct.c_ushort,
'int' : ct.c_int,
's32' : ct.c_int,
'enum' : ct.c_int,
'unsigned int' : ct.c_uint,
'u32' : ct.c_uint,
'long' : ct.c_long,
'unsigned long' : ct.c_ulong,
'long long' : ct.c_longlong,
's64' : ct.c_longlong,
'unsigned long long': ct.c_ulonglong,
'u64' : ct.c_ulonglong,
'__int128' : (ct.c_longlong * 2),
'unsigned __int128' : (ct.c_ulonglong * 2),
'void *' : ct.c_void_p,
}
# handle array types e.g. "int [16]" or "char[16]"
array_type = re.compile(r"([^ ]+) ?\[([0-9]+)\]$")
fields = []
num_fields = lib.bpf_perf_event_fields(event_map.bpf.module, event_map._name)
i = 0
while i < num_fields:
field = lib.bpf_perf_event_field(event_map.bpf.module, event_map._name, i).decode()
m = re.match(r"(.*)#(.*)", field)
field_name = m.group(1)
field_type = m.group(2)
if re.match(r"enum .*", field_type):
field_type = "enum"
m = array_type.match(field_type)
try:
if m:
fields.append((field_name, ct_mapping[m.group(1)] * int(m.group(2))))
else:
fields.append((field_name, ct_mapping[field_type]))
except KeyError:
# Using print+sys.exit instead of raising exceptions,
# because exceptions are caught by the caller.
print("Type: '%s' not recognized. Please define the data with ctypes manually."
% field_type, file=sys.stderr)
sys.exit(1)
i += 1
return type('', (ct.Structure,), {'_fields_': fields})
def Table(bpf, map_id, map_fd, keytype, leaftype, name, **kwargs):
"""Table(bpf, map_id, map_fd, keytype, leaftype, **kwargs)
Create a python object out of a reference to a bpf table handle"""
ttype = lib.bpf_table_type_id(bpf.module, map_id)
t = None
if ttype == BPF_MAP_TYPE_HASH:
t = HashTable(bpf, map_id, map_fd, keytype, leaftype)
elif ttype == BPF_MAP_TYPE_ARRAY:
t = Array(bpf, map_id, map_fd, keytype, leaftype)
elif ttype == BPF_MAP_TYPE_PROG_ARRAY:
t = ProgArray(bpf, map_id, map_fd, keytype, leaftype)
elif ttype == BPF_MAP_TYPE_PERF_EVENT_ARRAY:
t = PerfEventArray(bpf, map_id, map_fd, keytype, leaftype, name)
elif ttype == BPF_MAP_TYPE_PERCPU_HASH:
t = PerCpuHash(bpf, map_id, map_fd, keytype, leaftype, **kwargs)
elif ttype == BPF_MAP_TYPE_PERCPU_ARRAY:
t = PerCpuArray(bpf, map_id, map_fd, keytype, leaftype, **kwargs)
elif ttype == BPF_MAP_TYPE_LPM_TRIE:
t = LpmTrie(bpf, map_id, map_fd, keytype, leaftype)
elif ttype == BPF_MAP_TYPE_STACK_TRACE:
t = StackTrace(bpf, map_id, map_fd, keytype, leaftype)
elif ttype == BPF_MAP_TYPE_LRU_HASH:
t = LruHash(bpf, map_id, map_fd, keytype, leaftype)
elif ttype == BPF_MAP_TYPE_LRU_PERCPU_HASH:
t = LruPerCpuHash(bpf, map_id, map_fd, keytype, leaftype)
elif ttype == BPF_MAP_TYPE_CGROUP_ARRAY:
t = CgroupArray(bpf, map_id, map_fd, keytype, leaftype)
elif ttype == BPF_MAP_TYPE_DEVMAP:
t = DevMap(bpf, map_id, map_fd, keytype, leaftype)
elif ttype == BPF_MAP_TYPE_CPUMAP:
t = CpuMap(bpf, map_id, map_fd, keytype, leaftype)
elif ttype == BPF_MAP_TYPE_XSKMAP:
t = XskMap(bpf, map_id, map_fd, keytype, leaftype)
elif ttype == BPF_MAP_TYPE_ARRAY_OF_MAPS:
t = MapInMapArray(bpf, map_id, map_fd, keytype, leaftype)
elif ttype == BPF_MAP_TYPE_HASH_OF_MAPS:
t = MapInMapHash(bpf, map_id, map_fd, keytype, leaftype)
elif ttype == BPF_MAP_TYPE_QUEUE or ttype == BPF_MAP_TYPE_STACK:
t = QueueStack(bpf, map_id, map_fd, leaftype)
elif ttype == BPF_MAP_TYPE_RINGBUF:
t = RingBuf(bpf, map_id, map_fd, keytype, leaftype, name)
if t == None:
raise Exception("Unknown table type %d" % ttype)
return t
class TableBase(MutableMapping):
def __init__(self, bpf, map_id, map_fd, keytype, leaftype, name=None):
self.bpf = bpf
self.map_id = map_id
self.map_fd = map_fd
self.Key = keytype
self.Leaf = leaftype
self.ttype = lib.bpf_table_type_id(self.bpf.module, self.map_id)
self.flags = lib.bpf_table_flags_id(self.bpf.module, self.map_id)
self._cbs = {}
self._name = name
self.max_entries = int(lib.bpf_table_max_entries_id(self.bpf.module,
self.map_id))
def get_fd(self):
return self.map_fd
def key_sprintf(self, key):
buf = ct.create_string_buffer(ct.sizeof(self.Key) * 8)
res = lib.bpf_table_key_snprintf(self.bpf.module, self.map_id, buf,
len(buf), ct.byref(key))
if res < 0:
raise Exception("Could not printf key")
return buf.value
def leaf_sprintf(self, leaf):
buf = ct.create_string_buffer(ct.sizeof(self.Leaf) * 8)
res = lib.bpf_table_leaf_snprintf(self.bpf.module, self.map_id, buf,
len(buf), ct.byref(leaf))
if res < 0:
raise Exception("Could not printf leaf")
return buf.value
def key_scanf(self, key_str):
key = self.Key()
res = lib.bpf_table_key_sscanf(self.bpf.module, self.map_id, key_str,
ct.byref(key))
if res < 0:
raise Exception("Could not scanf key")
return key
def leaf_scanf(self, leaf_str):
leaf = self.Leaf()
res = lib.bpf_table_leaf_sscanf(self.bpf.module, self.map_id, leaf_str,
ct.byref(leaf))
if res < 0:
raise Exception("Could not scanf leaf")
return leaf
def __getitem__(self, key):
leaf = self.Leaf()
res = lib.bpf_lookup_elem(self.map_fd, ct.byref(key), ct.byref(leaf))
if res < 0:
raise KeyError
return leaf
def __setitem__(self, key, leaf):
res = lib.bpf_update_elem(self.map_fd, ct.byref(key), ct.byref(leaf), 0)
if res < 0:
errstr = os.strerror(ct.get_errno())
raise Exception("Could not update table: %s" % errstr)
def __delitem__(self, key):
res = lib.bpf_delete_elem(self.map_fd, ct.byref(key))
if res < 0:
raise KeyError
# override the MutableMapping's implementation of these since they
# don't handle KeyError nicely
def itervalues(self):
for key in self:
# a map entry may be deleted in between discovering the key and
# fetching the value, suppress such errors
try:
yield self[key]
except KeyError:
pass
def iteritems(self):
for key in self:
try:
yield (key, self[key])
except KeyError:
pass
def items(self):
return [item for item in self.iteritems()]
def values(self):
return [value for value in self.itervalues()]
def clear(self):
# default clear uses popitem, which can race with the bpf prog
for k in self.keys():
self.__delitem__(k)
def _alloc_keys_values(self, alloc_k=False, alloc_v=False, count=None):
"""Allocate keys and/or values arrays. Useful for in items_*_batch.
Args:
alloc_k (bool): True to allocate keys array, False otherwise.
Default is False.
alloc_v (bool): True to allocate values array, False otherwise.
Default is False.
count (int): number of elements in the array(s) to allocate. If
count is None then it allocates the maximum number of elements i.e
self.max_entries.
Returns:
tuple: (count, keys, values). Where count is ct.c_uint32,
and keys and values an instance of ct.Array
Raises:
ValueError: If count is less than 1 or greater than
self.max_entries.
"""
keys = values = None
if not alloc_k and not alloc_v:
return (ct.c_uint32(0), None, None)
if not count: # means alloc maximum size
count = self.max_entries
elif count < 1 or count > self.max_entries:
raise ValueError("Wrong count")
if alloc_k:
keys = (self.Key * count)()
if alloc_v:
values = (self.Leaf * count)()
return (ct.c_uint32(count), keys, values)
def _sanity_check_keys_values(self, keys=None, values=None):
"""Check if the given keys or values have the right type and size.
Args:
keys (ct.Array): keys array to check
values (ct.Array): values array to check
Returns:
ct.c_uint32 : the size of the array(s)
Raises:
ValueError: If length of arrays is less than 1 or greater than
self.max_entries, or when both arrays length are different.
TypeError: If the keys and values are not an instance of ct.Array
"""
arr_len = 0
for elem in [keys, values]:
if elem:
if not isinstance(elem, ct.Array):
raise TypeError
arr_len = len(elem)
if arr_len < 1 or arr_len > self.max_entries:
raise ValueError("Array's length is wrong")
if keys and values:
# check both length are equal
if len(keys) != len(values):
raise ValueError("keys array length != values array length")
return ct.c_uint32(arr_len)
def items_lookup_batch(self):
"""Look up all the key-value pairs in the map.
Args:
None
Yields:
tuple: The tuple of (key,value) for every entries that have
been looked up.
Notes: lookup batch on a keys subset is not supported by the kernel.
"""
for k, v in self._items_lookup_and_optionally_delete_batch(delete=False):
yield(k, v)
return
def items_delete_batch(self, ct_keys=None):
"""Delete the key-value pairs related to the keys given as parameters.
Note that if no key are given, it is faster to call
lib.bpf_lookup_and_delete_batch than create keys array and then call
lib.bpf_delete_batch on these keys.
Args:
ct_keys (ct.Array): keys array to delete. If an array of keys is
given then it deletes all the related keys-values.
If keys is None (default) then it deletes all entries.
Yields:
tuple: The tuple of (key,value) for every entries that have
been deleted.
Raises:
Exception: If bpf syscall return value indicates an error.
"""
if ct_keys is not None:
ct_cnt = self._sanity_check_keys_values(keys=ct_keys)
res = lib.bpf_delete_batch(self.map_fd,
ct.byref(ct_keys),
ct.byref(ct_cnt)
)
if (res != 0):
raise Exception("BPF_MAP_DELETE_BATCH has failed: %s"
% os.strerror(ct.get_errno()))
else:
for _ in self.items_lookup_and_delete_batch():
return
def items_update_batch(self, ct_keys, ct_values):
"""Update all the key-value pairs in the map provided.
The arrays must be the same length, between 1 and the maximum number
of entries.
Args:
ct_keys (ct.Array): keys array to update
ct_values (ct.Array): values array to update
Raises:
Exception: If bpf syscall return value indicates an error.
"""
ct_cnt = self._sanity_check_keys_values(keys=ct_keys, values=ct_values)
res = lib.bpf_update_batch(self.map_fd,
ct.byref(ct_keys),
ct.byref(ct_values),
ct.byref(ct_cnt)
)
if (res != 0):
raise Exception("BPF_MAP_UPDATE_BATCH has failed: %s"
% os.strerror(ct.get_errno()))
def items_lookup_and_delete_batch(self):
"""Look up and delete all the key-value pairs in the map.
Args:
None
Yields:
tuple: The tuple of (key,value) for every entries that have
been looked up and deleted.
Notes: lookup and delete batch on a keys subset is not supported by
the kernel.
"""
for k, v in self._items_lookup_and_optionally_delete_batch(delete=True):
yield(k, v)
return
def _items_lookup_and_optionally_delete_batch(self, delete=True):
"""Look up and optionally delete all the key-value pairs in the map.
Args:
delete (bool) : look up and delete the key-value pairs when True,
else just look up.
Yields:
tuple: The tuple of (key,value) for every entries that have
been looked up and deleted.
Raises:
Exception: If bpf syscall return value indicates an error.
Notes: lookup and delete batch on a keys subset is not supported by
the kernel.
"""
if delete is True:
bpf_batch = lib.bpf_lookup_and_delete_batch
bpf_cmd = "BPF_MAP_LOOKUP_AND_DELETE_BATCH"
else:
bpf_batch = lib.bpf_lookup_batch
bpf_cmd = "BPF_MAP_LOOKUP_BATCH"
# alloc keys and values to the max size
ct_buf_size, ct_keys, ct_values = self._alloc_keys_values(alloc_k=True,
alloc_v=True)
ct_out_batch = ct_cnt = ct.c_uint32(0)
total = 0
while True:
ct_cnt.value = ct_buf_size.value - total
res = bpf_batch(self.map_fd,
ct.byref(ct_out_batch) if total else None,
ct.byref(ct_out_batch),
ct.byref(ct_keys, ct.sizeof(self.Key) * total),
ct.byref(ct_values, ct.sizeof(self.Leaf) * total),
ct.byref(ct_cnt)
)
errcode = ct.get_errno()
total += ct_cnt.value
if (res != 0 and errcode != errno.ENOENT):
raise Exception("%s has failed: %s" % (bpf_cmd,
os.strerror(errcode)))
if res != 0:
break # success
if total == ct_buf_size.value: # buffer full, we can't progress
break
if ct_cnt.value == 0:
# no progress, probably because concurrent update
# puts too many elements in one bucket.
break
for i in range(0, total):
yield (ct_keys[i], ct_values[i])
def zero(self):
# Even though this is not very efficient, we grab the entire list of
# keys before enumerating it. This helps avoid a potential race where
# the leaf assignment changes a hash table bucket that is being
# enumerated by the same loop, and may lead to a hang.
for k in list(self.keys()):
self[k] = self.Leaf()
def __iter__(self):
return TableBase.Iter(self)
def iter(self): return self.__iter__()
def keys(self): return self.__iter__()
class Iter(object):
def __init__(self, table):
self.table = table
self.key = None
def __iter__(self):
return self
def __next__(self):
return self.next()
def next(self):
self.key = self.table.next(self.key)
return self.key
def next(self, key):
next_key = self.Key()
if key is None:
res = lib.bpf_get_first_key(self.map_fd, ct.byref(next_key),
ct.sizeof(self.Key))
else:
res = lib.bpf_get_next_key(self.map_fd, ct.byref(key),
ct.byref(next_key))
if res < 0:
raise StopIteration()
return next_key
def decode_c_struct(self, tmp, buckets, bucket_fn, bucket_sort_fn):
f1 = self.Key._fields_[0][0]
f2 = self.Key._fields_[1][0]
# The above code assumes that self.Key._fields_[1][0] holds the
# slot. But a padding member may have been inserted here, which
# breaks the assumption and leads to chaos.
# TODO: this is a quick fix. Fixing/working around in the BCC
# internal library is the right thing to do.
if f2 == '__pad_1' and len(self.Key._fields_) == 3:
f2 = self.Key._fields_[2][0]
for k, v in self.items():
bucket = getattr(k, f1)
if bucket_fn:
bucket = bucket_fn(bucket)
vals = tmp[bucket] = tmp.get(bucket, [0] * log2_index_max)
slot = getattr(k, f2)
vals[slot] = v.value
buckets_lst = list(tmp.keys())
if bucket_sort_fn:
buckets_lst = bucket_sort_fn(buckets_lst)
for bucket in buckets_lst:
buckets.append(bucket)
def print_json_hist(self, val_type="value", section_header="Bucket ptr",
section_print_fn=None, bucket_fn=None, bucket_sort_fn=None):
"""print_json_hist(val_type="value", section_header="Bucket ptr",
section_print_fn=None, bucket_fn=None,
bucket_sort_fn=None):
Prints a table as a json histogram. The table must be stored as
log2. The val_type argument is optional, and is a column header.
If the histogram has a secondary key, the dictionary will be split by secondary key
If section_print_fn is not None, it will be passed the bucket value
to format into a string as it sees fit. If bucket_fn is not None,
it will be used to produce a bucket value for the histogram keys.
If bucket_sort_fn is not None, it will be used to sort the buckets
before iterating them, and it is useful when there are multiple fields
in the secondary key.
The maximum index allowed is log2_index_max (65), which will
accommodate any 64-bit integer in the histogram.
"""
if isinstance(self.Key(), ct.Structure):
tmp = {}
buckets = []
self.decode_c_struct(tmp, buckets, bucket_fn, bucket_sort_fn)
for bucket in buckets:
vals = tmp[bucket]
if section_print_fn:
section_bucket = (section_header, section_print_fn(bucket))
else:
section_bucket = (section_header, bucket)
_print_json_hist(vals, val_type, section_bucket)
else:
vals = [0] * log2_index_max
for k, v in self.items():
vals[k.value] = v.value
_print_json_hist(vals, val_type)
def print_log2_hist(self, val_type="value", section_header="Bucket ptr",
section_print_fn=None, bucket_fn=None, strip_leading_zero=None,
bucket_sort_fn=None):
"""print_log2_hist(val_type="value", section_header="Bucket ptr",
section_print_fn=None, bucket_fn=None,
strip_leading_zero=None, bucket_sort_fn=None):
Prints a table as a log2 histogram. The table must be stored as
log2. The val_type argument is optional, and is a column header.
If the histogram has a secondary key, multiple tables will print
and section_header can be used as a header description for each.
If section_print_fn is not None, it will be passed the bucket value
to format into a string as it sees fit. If bucket_fn is not None,
it will be used to produce a bucket value for the histogram keys.
If the value of strip_leading_zero is not False, prints a histogram
that is omitted leading zeros from the beginning.
If bucket_sort_fn is not None, it will be used to sort the buckets
before iterating them, and it is useful when there are multiple fields
in the secondary key.
The maximum index allowed is log2_index_max (65), which will
accommodate any 64-bit integer in the histogram.
"""
if isinstance(self.Key(), ct.Structure):
tmp = {}
buckets = []
self.decode_c_struct(tmp, buckets, bucket_fn, bucket_sort_fn)
for bucket in buckets:
vals = tmp[bucket]
if section_print_fn:
print("\n%s = %s" % (section_header,
section_print_fn(bucket)))
else:
print("\n%s = %r" % (section_header, bucket))
_print_log2_hist(vals, val_type, strip_leading_zero)
else:
vals = [0] * log2_index_max
for k, v in self.items():
vals[k.value] = v.value
_print_log2_hist(vals, val_type, strip_leading_zero)
def print_linear_hist(self, val_type="value", section_header="Bucket ptr",
section_print_fn=None, bucket_fn=None, strip_leading_zero=None,
bucket_sort_fn=None):
"""print_linear_hist(val_type="value", section_header="Bucket ptr",
section_print_fn=None, bucket_fn=None,
strip_leading_zero=None, bucket_sort_fn=None)
Prints a table as a linear histogram. This is intended to span integer
ranges, eg, from 0 to 100. The val_type argument is optional, and is a
column header. If the histogram has a secondary key, multiple tables
will print and section_header can be used as a header description for
each. If section_print_fn is not None, it will be passed the bucket
value to format into a string as it sees fit. If bucket_fn is not None,
it will be used to produce a bucket value for the histogram keys.
If the value of strip_leading_zero is not False, prints a histogram
that is omitted leading zeros from the beginning.
If bucket_sort_fn is not None, it will be used to sort the buckets
before iterating them, and it is useful when there are multiple fields
in the secondary key.
The maximum index allowed is linear_index_max (1025), which is hoped
to be sufficient for integer ranges spanned.
"""
if isinstance(self.Key(), ct.Structure):
tmp = {}
buckets = []
self.decode_c_struct(tmp, buckets, bucket_fn, bucket_sort_fn)
for bucket in buckets:
vals = tmp[bucket]
if section_print_fn:
print("\n%s = %s" % (section_header,
section_print_fn(bucket)))
else:
print("\n%s = %r" % (section_header, bucket))
_print_linear_hist(vals, val_type, strip_leading_zero)
else:
vals = [0] * linear_index_max
for k, v in self.items():
try:
vals[k.value] = v.value
except IndexError:
# Improve error text. If the limit proves a nusiance, this
# function be rewritten to avoid having one.
raise IndexError(("Index in print_linear_hist() of %d " +
"exceeds max of %d.") % (k.value, linear_index_max))
_print_linear_hist(vals, val_type, strip_leading_zero)
class HashTable(TableBase):
def __init__(self, *args, **kwargs):
super(HashTable, self).__init__(*args, **kwargs)
def __len__(self):
i = 0
for k in self: i += 1
return i
class LruHash(HashTable):
def __init__(self, *args, **kwargs):
super(LruHash, self).__init__(*args, **kwargs)
class ArrayBase(TableBase):
def __init__(self, *args, **kwargs):
super(ArrayBase, self).__init__(*args, **kwargs)
def _normalize_key(self, key):
if isinstance(key, int):
if key < 0:
key = len(self) + key
key = self.Key(key)
if not isinstance(key, ct._SimpleCData):
raise IndexError("Array index must be an integer type")
if key.value >= len(self):
raise IndexError("Array index out of range")
return key
def __len__(self):
return self.max_entries
def __getitem__(self, key):
key = self._normalize_key(key)
return super(ArrayBase, self).__getitem__(key)
def __setitem__(self, key, leaf):
key = self._normalize_key(key)
super(ArrayBase, self).__setitem__(key, leaf)
def __delitem__(self, key):
key = self._normalize_key(key)
super(ArrayBase, self).__delitem__(key)
def clearitem(self, key):
key = self._normalize_key(key)
leaf = self.Leaf()
res = lib.bpf_update_elem(self.map_fd, ct.byref(key), ct.byref(leaf), 0)
if res < 0:
raise Exception("Could not clear item")
def __iter__(self):
return ArrayBase.Iter(self, self.Key)
class Iter(object):
def __init__(self, table, keytype):
self.Key = keytype
self.table = table
self.i = -1
def __iter__(self):
return self
def __next__(self):
return self.next()
def next(self):
self.i += 1
if self.i == len(self.table):
raise StopIteration()
return self.Key(self.i)
class Array(ArrayBase):
def __init__(self, *args, **kwargs):
super(Array, self).__init__(*args, **kwargs)
def __delitem__(self, key):
# Delete in Array type does not have an effect, so zero out instead
self.clearitem(key)
class ProgArray(ArrayBase):
def __init__(self, *args, **kwargs):
super(ProgArray, self).__init__(*args, **kwargs)
def __setitem__(self, key, leaf):
if isinstance(leaf, int):
leaf = self.Leaf(leaf)
if isinstance(leaf, self.bpf.Function):
leaf = self.Leaf(leaf.fd)
super(ProgArray, self).__setitem__(key, leaf)
class FileDesc:
def __init__(self, fd):
if (fd is None) or (fd < 0):
raise Exception("Invalid file descriptor")
self.fd = fd
def clean_up(self):
if (self.fd is not None) and (self.fd >= 0):
os.close(self.fd)
self.fd = None
def __del__(self):
self.clean_up()
def __enter__(self, *args, **kwargs):
return self
def __exit__(self, *args, **kwargs):
self.clean_up()
class CgroupArray(ArrayBase):
def __init__(self, *args, **kwargs):
super(CgroupArray, self).__init__(*args, **kwargs)
def __setitem__(self, key, leaf):
if isinstance(leaf, int):
super(CgroupArray, self).__setitem__(key, self.Leaf(leaf))
elif isinstance(leaf, str):
# TODO: Add os.O_CLOEXEC once we move to Python version >3.3
with FileDesc(os.open(leaf, os.O_RDONLY)) as f:
super(CgroupArray, self).__setitem__(key, self.Leaf(f.fd))
else:
raise Exception("Cgroup array key must be either FD or cgroup path")
class PerfEventArray(ArrayBase):
def __init__(self, *args, **kwargs):
super(PerfEventArray, self).__init__(*args, **kwargs)
self._open_key_fds = {}
self._event_class = None
def __del__(self):
keys = list(self._open_key_fds.keys())
for key in keys:
del self[key]
def __delitem__(self, key):
if key not in self._open_key_fds:
return
# Delete entry from the array
super(PerfEventArray, self).__delitem__(key)
key_id = (id(self), key)
if key_id in self.bpf.perf_buffers:
# The key is opened for perf ring buffer
lib.perf_reader_free(self.bpf.perf_buffers[key_id])
del self.bpf.perf_buffers[key_id]
del self._cbs[key]
else:
# The key is opened for perf event read
lib.bpf_close_perf_event_fd(self._open_key_fds[key])
del self._open_key_fds[key]
def event(self, data):
"""event(data)
When perf buffers are opened to receive custom perf event,
the underlying event data struct which is defined in C in
the BPF program can be deduced via this function. This avoids
redundant definitions in Python.
"""
if self._event_class == None:
self._event_class = _get_event_class(self)
return ct.cast(data, ct.POINTER(self._event_class)).contents
def open_perf_buffer(self, callback, page_cnt=8, lost_cb=None, wakeup_events=1):
"""open_perf_buffers(callback)
Opens a set of per-cpu ring buffer to receive custom perf event
data from the bpf program. The callback will be invoked for each
event submitted from the kernel, up to millions per second. Use
page_cnt to change the size of the per-cpu ring buffer. The value
must be a power of two and defaults to 8.
"""
if page_cnt & (page_cnt - 1) != 0:
raise Exception("Perf buffer page_cnt must be a power of two")
for i in get_online_cpus():
self._open_perf_buffer(i, callback, page_cnt, lost_cb, wakeup_events)
def _open_perf_buffer(self, cpu, callback, page_cnt, lost_cb, wakeup_events):
def raw_cb_(_, data, size):
try:
callback(cpu, data, size)
except IOError as e:
if e.errno == errno.EPIPE:
exit()
else:
raise e
def lost_cb_(_, lost):
try:
lost_cb(lost)
except IOError as e:
if e.errno == errno.EPIPE:
exit()
else:
raise e
fn = _RAW_CB_TYPE(raw_cb_)
lost_fn = _LOST_CB_TYPE(lost_cb_) if lost_cb else ct.cast(None, _LOST_CB_TYPE)
opts = bcc_perf_buffer_opts()
opts.pid = -1
opts.cpu = cpu
opts.wakeup_events = wakeup_events
reader = lib.bpf_open_perf_buffer_opts(fn, lost_fn, None, page_cnt, ct.byref(opts))
if not reader:
raise Exception("Could not open perf buffer")
fd = lib.perf_reader_fd(reader)
self[self.Key(cpu)] = self.Leaf(fd)
self.bpf.perf_buffers[(id(self), cpu)] = reader
# keep a refcnt
self._cbs[cpu] = (fn, lost_fn)
# The actual fd is held by the perf reader, add to track opened keys
self._open_key_fds[cpu] = -1
def _open_perf_event(self, cpu, typ, config):
fd = lib.bpf_open_perf_event(typ, config, -1, cpu)
if fd < 0:
raise Exception("bpf_open_perf_event failed")
self[self.Key(cpu)] = self.Leaf(fd)
self._open_key_fds[cpu] = fd
def open_perf_event(self, typ, config):
"""open_perf_event(typ, config)
Configures the table such that calls from the bpf program to
table.perf_read(CUR_CPU_IDENTIFIER) will return the hardware
counter denoted by event ev on the local cpu.
"""
for i in get_online_cpus():
self._open_perf_event(i, typ, config)
class PerCpuHash(HashTable):
def __init__(self, *args, **kwargs):
self.reducer = kwargs.pop("reducer", None)
super(PerCpuHash, self).__init__(*args, **kwargs)
self.sLeaf = self.Leaf
self.total_cpu = len(get_possible_cpus())
# This needs to be 8 as hard coded into the linux kernel.
self.alignment = ct.sizeof(self.sLeaf) % 8
if self.alignment == 0:
self.Leaf = self.sLeaf * self.total_cpu
else:
# Currently Float, Char, un-aligned structs are not supported
if self.sLeaf == ct.c_uint:
self.Leaf = ct.c_uint64 * self.total_cpu
elif self.sLeaf == ct.c_int:
self.Leaf = ct.c_int64 * self.total_cpu
else:
raise IndexError("Leaf must be aligned to 8 bytes")
def getvalue(self, key):
result = super(PerCpuHash, self).__getitem__(key)
if self.alignment == 0:
ret = result
else:
ret = (self.sLeaf * self.total_cpu)()
for i in range(0, self.total_cpu):
ret[i] = result[i]
return ret
def __getitem__(self, key):
if self.reducer:
return reduce(self.reducer, self.getvalue(key))
else:
return self.getvalue(key)
def __setitem__(self, key, leaf):
super(PerCpuHash, self).__setitem__(key, leaf)
def sum(self, key):
if isinstance(self.Leaf(), ct.Structure):
raise IndexError("Leaf must be an integer type for default sum functions")
return self.sLeaf(sum(self.getvalue(key)))
def max(self, key):
if isinstance(self.Leaf(), ct.Structure):
raise IndexError("Leaf must be an integer type for default max functions")
return self.sLeaf(max(self.getvalue(key)))
def average(self, key):
result = self.sum(key)
return result.value / self.total_cpu
class LruPerCpuHash(PerCpuHash):
def __init__(self, *args, **kwargs):
super(LruPerCpuHash, self).__init__(*args, **kwargs)
class PerCpuArray(ArrayBase):
def __init__(self, *args, **kwargs):
self.reducer = kwargs.pop("reducer", None)
super(PerCpuArray, self).__init__(*args, **kwargs)
self.sLeaf = self.Leaf
self.total_cpu = len(get_possible_cpus())
# This needs to be 8 as hard coded into the linux kernel.
self.alignment = ct.sizeof(self.sLeaf) % 8
if self.alignment == 0:
self.Leaf = self.sLeaf * self.total_cpu
else:
# Currently Float, Char, un-aligned structs are not supported
if self.sLeaf == ct.c_uint:
self.Leaf = ct.c_uint64 * self.total_cpu
elif self.sLeaf == ct.c_int:
self.Leaf = ct.c_int64 * self.total_cpu
else:
raise IndexError("Leaf must be aligned to 8 bytes")
def getvalue(self, key):
result = super(PerCpuArray, self).__getitem__(key)
if self.alignment == 0:
ret = result
else:
ret = (self.sLeaf * self.total_cpu)()
for i in range(0, self.total_cpu):
ret[i] = result[i]
return ret
def __getitem__(self, key):
if (self.reducer):
return reduce(self.reducer, self.getvalue(key))
else:
return self.getvalue(key)
def __setitem__(self, key, leaf):
super(PerCpuArray, self).__setitem__(key, leaf)
def __delitem__(self, key):
# Delete in this type does not have an effect, so zero out instead
self.clearitem(key)
def sum(self, key):
if isinstance(self.Leaf(), ct.Structure):
raise IndexError("Leaf must be an integer type for default sum functions")
return self.sLeaf(sum(self.getvalue(key)))
def max(self, key):
if isinstance(self.Leaf(), ct.Structure):
raise IndexError("Leaf must be an integer type for default max functions")
return self.sLeaf(max(self.getvalue(key)))
def average(self, key):
result = self.sum(key)
return result.value / self.total_cpu
class LpmTrie(TableBase):
def __init__(self, *args, **kwargs):
super(LpmTrie, self).__init__(*args, **kwargs)
def __len__(self):
raise NotImplementedError
class StackTrace(TableBase):
MAX_DEPTH = 127
BPF_F_STACK_BUILD_ID = (1<<5)
BPF_STACK_BUILD_ID_EMPTY = 0 #can't get stacktrace
BPF_STACK_BUILD_ID_VALID = 1 #valid build-id,ip
BPF_STACK_BUILD_ID_IP = 2 #fallback to ip
def __init__(self, *args, **kwargs):
super(StackTrace, self).__init__(*args, **kwargs)
class StackWalker(object):
def __init__(self, stack, flags, resolve=None):
self.stack = stack
self.n = -1
self.resolve = resolve
self.flags = flags
def __iter__(self):
return self
def __next__(self):
return self.next()
def next(self):
self.n += 1
if self.n == StackTrace.MAX_DEPTH:
raise StopIteration()
if self.flags & StackTrace.BPF_F_STACK_BUILD_ID:
addr = self.stack.trace[self.n]
if addr.status == StackTrace.BPF_STACK_BUILD_ID_IP or \
addr.status == StackTrace.BPF_STACK_BUILD_ID_EMPTY:
raise StopIteration()
else:
addr = self.stack.ip[self.n]
if addr == 0 :
raise StopIteration()
return self.resolve(addr) if self.resolve else addr
def walk(self, stack_id, resolve=None):
return StackTrace.StackWalker(self[self.Key(stack_id)], self.flags, resolve)
def __len__(self):
i = 0
for k in self: i += 1
return i
def clear(self):
pass
class DevMap(ArrayBase):
def __init__(self, *args, **kwargs):
super(DevMap, self).__init__(*args, **kwargs)
class CpuMap(ArrayBase):
def __init__(self, *args, **kwargs):
super(CpuMap, self).__init__(*args, **kwargs)
class XskMap(ArrayBase):
def __init__(self, *args, **kwargs):
super(XskMap, self).__init__(*args, **kwargs)
class MapInMapArray(ArrayBase):
def __init__(self, *args, **kwargs):
super(MapInMapArray, self).__init__(*args, **kwargs)
class MapInMapHash(HashTable):
def __init__(self, *args, **kwargs):
super(MapInMapHash, self).__init__(*args, **kwargs)
class RingBuf(TableBase):
def __init__(self, *args, **kwargs):
super(RingBuf, self).__init__(*args, **kwargs)
self._ringbuf = None
self._event_class = None
def __delitem(self, key):
pass
def __del__(self):
pass
def __len__(self):
return 0
def event(self, data):
"""event(data)
When ring buffers are opened to receive custom event,
the underlying event data struct which is defined in C in
the BPF program can be deduced via this function. This avoids
redundant definitions in Python.
"""
if self._event_class == None:
self._event_class = _get_event_class(self)
return ct.cast(data, ct.POINTER(self._event_class)).contents
def open_ring_buffer(self, callback, ctx=None):
"""open_ring_buffer(callback)
Opens a ring buffer to receive custom event data from the bpf program.
The callback will be invoked for each event submitted from the kernel,
up to millions per second.
"""
def ringbuf_cb_(ctx, data, size):
try:
ret = callback(ctx, data, size)
# Callback for ringbufs should _always_ return an integer.
# If the function the user registers does not,
# simply fall back to returning 0.
try:
ret = int(ret)
except:
ret = 0
except IOError as e:
if e.errno == errno.EPIPE:
exit()
else:
raise e
return ret
fn = _RINGBUF_CB_TYPE(ringbuf_cb_)
self.bpf._open_ring_buffer(self.map_fd, fn, ctx)
# keep a refcnt
self._cbs[0] = fn
class QueueStack:
# Flag for map.push
BPF_EXIST = 2
def __init__(self, bpf, map_id, map_fd, leaftype):
self.bpf = bpf
self.map_id = map_id
self.map_fd = map_fd
self.Leaf = leaftype
self.ttype = lib.bpf_table_type_id(self.bpf.module, self.map_id)
self.flags = lib.bpf_table_flags_id(self.bpf.module, self.map_id)
self.max_entries = int(lib.bpf_table_max_entries_id(self.bpf.module,
self.map_id))
def leaf_sprintf(self, leaf):
buf = ct.create_string_buffer(ct.sizeof(self.Leaf) * 8)
res = lib.bpf_table_leaf_snprintf(self.bpf.module, self.map_id, buf,
len(buf), ct.byref(leaf))
if res < 0:
raise Exception("Could not printf leaf")
return buf.value
def leaf_scanf(self, leaf_str):
leaf = self.Leaf()
res = lib.bpf_table_leaf_sscanf(self.bpf.module, self.map_id, leaf_str,
ct.byref(leaf))
if res < 0:
raise Exception("Could not scanf leaf")
return leaf
def push(self, leaf, flags=0):
res = lib.bpf_update_elem(self.map_fd, None, ct.byref(leaf), flags)
if res < 0:
errstr = os.strerror(ct.get_errno())
raise Exception("Could not push to table: %s" % errstr)
def pop(self):
leaf = self.Leaf()
res = lib.bpf_lookup_and_delete(self.map_fd, None, ct.byref(leaf))
if res < 0:
raise KeyError("Could not pop from table")
return leaf
def peek(self):
leaf = self.Leaf()
res = lib.bpf_lookup_elem(self.map_fd, None, ct.byref(leaf))
if res < 0:
raise KeyError("Could not peek table")
return leaf
def itervalues(self):
# to avoid infinite loop, set maximum pops to max_entries
cnt = self.max_entries
while cnt:
try:
yield(self.pop())
cnt -= 1
except KeyError:
return
def values(self):
return [value for value in self.itervalues()]
Zerion Mini Shell 1.0