Mini Shell
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import annotations
import abc
import typing
from math import gcd
from cryptography.hazmat.bindings._rust import openssl as rust_openssl
from cryptography.hazmat.primitives import _serialization, hashes
from cryptography.hazmat.primitives._asymmetric import AsymmetricPadding
from cryptography.hazmat.primitives.asymmetric import utils as asym_utils
class RSAPrivateKey(metaclass=abc.ABCMeta):
@abc.abstractmethod
def decrypt(self, ciphertext: bytes, padding: AsymmetricPadding) -> bytes:
"""
Decrypts the provided ciphertext.
"""
@property
@abc.abstractmethod
def key_size(self) -> int:
"""
The bit length of the public modulus.
"""
@abc.abstractmethod
def public_key(self) -> RSAPublicKey:
"""
The RSAPublicKey associated with this private key.
"""
@abc.abstractmethod
def sign(
self,
data: bytes,
padding: AsymmetricPadding,
algorithm: asym_utils.Prehashed | hashes.HashAlgorithm,
) -> bytes:
"""
Signs the data.
"""
@abc.abstractmethod
def private_numbers(self) -> RSAPrivateNumbers:
"""
Returns an RSAPrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
RSAPrivateKeyWithSerialization = RSAPrivateKey
RSAPrivateKey.register(rust_openssl.rsa.RSAPrivateKey)
class RSAPublicKey(metaclass=abc.ABCMeta):
@abc.abstractmethod
def encrypt(self, plaintext: bytes, padding: AsymmetricPadding) -> bytes:
"""
Encrypts the given plaintext.
"""
@property
@abc.abstractmethod
def key_size(self) -> int:
"""
The bit length of the public modulus.
"""
@abc.abstractmethod
def public_numbers(self) -> RSAPublicNumbers:
"""
Returns an RSAPublicNumbers
"""
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
@abc.abstractmethod
def verify(
self,
signature: bytes,
data: bytes,
padding: AsymmetricPadding,
algorithm: asym_utils.Prehashed | hashes.HashAlgorithm,
) -> None:
"""
Verifies the signature of the data.
"""
@abc.abstractmethod
def recover_data_from_signature(
self,
signature: bytes,
padding: AsymmetricPadding,
algorithm: hashes.HashAlgorithm | None,
) -> bytes:
"""
Recovers the original data from the signature.
"""
@abc.abstractmethod
def __eq__(self, other: object) -> bool:
"""
Checks equality.
"""
RSAPublicKeyWithSerialization = RSAPublicKey
RSAPublicKey.register(rust_openssl.rsa.RSAPublicKey)
RSAPrivateNumbers = rust_openssl.rsa.RSAPrivateNumbers
RSAPublicNumbers = rust_openssl.rsa.RSAPublicNumbers
def generate_private_key(
public_exponent: int,
key_size: int,
backend: typing.Any = None,
) -> RSAPrivateKey:
_verify_rsa_parameters(public_exponent, key_size)
return rust_openssl.rsa.generate_private_key(public_exponent, key_size)
def _verify_rsa_parameters(public_exponent: int, key_size: int) -> None:
if public_exponent not in (3, 65537):
raise ValueError(
"public_exponent must be either 3 (for legacy compatibility) or "
"65537. Almost everyone should choose 65537 here!"
)
if key_size < 512:
raise ValueError("key_size must be at least 512-bits.")
def _modinv(e: int, m: int) -> int:
"""
Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1
"""
x1, x2 = 1, 0
a, b = e, m
while b > 0:
q, r = divmod(a, b)
xn = x1 - q * x2
a, b, x1, x2 = b, r, x2, xn
return x1 % m
def rsa_crt_iqmp(p: int, q: int) -> int:
"""
Compute the CRT (q ** -1) % p value from RSA primes p and q.
"""
return _modinv(q, p)
def rsa_crt_dmp1(private_exponent: int, p: int) -> int:
"""
Compute the CRT private_exponent % (p - 1) value from the RSA
private_exponent (d) and p.
"""
return private_exponent % (p - 1)
def rsa_crt_dmq1(private_exponent: int, q: int) -> int:
"""
Compute the CRT private_exponent % (q - 1) value from the RSA
private_exponent (d) and q.
"""
return private_exponent % (q - 1)
# Controls the number of iterations rsa_recover_prime_factors will perform
# to obtain the prime factors. Each iteration increments by 2 so the actual
# maximum attempts is half this number.
_MAX_RECOVERY_ATTEMPTS = 1000
def rsa_recover_prime_factors(n: int, e: int, d: int) -> tuple[int, int]:
"""
Compute factors p and q from the private exponent d. We assume that n has
no more than two factors. This function is adapted from code in PyCrypto.
"""
# See 8.2.2(i) in Handbook of Applied Cryptography.
ktot = d * e - 1
# The quantity d*e-1 is a multiple of phi(n), even,
# and can be represented as t*2^s.
t = ktot
while t % 2 == 0:
t = t // 2
# Cycle through all multiplicative inverses in Zn.
# The algorithm is non-deterministic, but there is a 50% chance
# any candidate a leads to successful factoring.
# See "Digitalized Signatures and Public Key Functions as Intractable
# as Factorization", M. Rabin, 1979
spotted = False
a = 2
while not spotted and a < _MAX_RECOVERY_ATTEMPTS:
k = t
# Cycle through all values a^{t*2^i}=a^k
while k < ktot:
cand = pow(a, k, n)
# Check if a^k is a non-trivial root of unity (mod n)
if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
# We have found a number such that (cand-1)(cand+1)=0 (mod n).
# Either of the terms divides n.
p = gcd(cand + 1, n)
spotted = True
break
k *= 2
# This value was not any good... let's try another!
a += 2
if not spotted:
raise ValueError("Unable to compute factors p and q from exponent d.")
# Found !
q, r = divmod(n, p)
assert r == 0
p, q = sorted((p, q), reverse=True)
return (p, q)
Zerion Mini Shell 1.0