Mini Shell

Direktori : /opt/saltstack/salt/lib/python3.10/site-packages/Cryptodome/PublicKey/
Upload File :
Current File : //opt/saltstack/salt/lib/python3.10/site-packages/Cryptodome/PublicKey/RSA.py

# -*- coding: utf-8 -*-
# ===================================================================
#
# Copyright (c) 2016, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in
#    the documentation and/or other materials provided with the
#    distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================

__all__ = ['generate', 'construct', 'import_key',
           'RsaKey', 'oid']

import binascii
import struct

from Cryptodome import Random
from Cryptodome.Util.py3compat import tobytes, bord, tostr
from Cryptodome.Util.asn1 import DerSequence, DerNull
from Cryptodome.Util.number import bytes_to_long

from Cryptodome.Math.Numbers import Integer
from Cryptodome.Math.Primality import (test_probable_prime,
                                   generate_probable_prime, COMPOSITE)

from Cryptodome.PublicKey import (_expand_subject_public_key_info,
                              _create_subject_public_key_info,
                              _extract_subject_public_key_info)


class RsaKey(object):
    r"""Class defining an actual RSA key.
    Do not instantiate directly.
    Use :func:`generate`, :func:`construct` or :func:`import_key` instead.

    :ivar n: RSA modulus
    :vartype n: integer

    :ivar e: RSA public exponent
    :vartype e: integer

    :ivar d: RSA private exponent
    :vartype d: integer

    :ivar p: First factor of the RSA modulus
    :vartype p: integer

    :ivar q: Second factor of the RSA modulus
    :vartype q: integer

    :ivar invp: Chinese remainder component (:math:`p^{-1} \text{mod } q`)
    :vartype invp: integer

    :ivar invq: Chinese remainder component (:math:`q^{-1} \text{mod } p`)
    :vartype invq: integer

    :ivar u: Same as ``invp``
    :vartype u: integer

    :undocumented: exportKey, publickey
    """

    def __init__(self, **kwargs):
        """Build an RSA key.

        :Keywords:
          n : integer
            The modulus.
          e : integer
            The public exponent.
          d : integer
            The private exponent. Only required for private keys.
          p : integer
            The first factor of the modulus. Only required for private keys.
          q : integer
            The second factor of the modulus. Only required for private keys.
          u : integer
            The CRT coefficient (inverse of p modulo q). Only required for
            private keys.
        """

        input_set = set(kwargs.keys())
        public_set = set(('n', 'e'))
        private_set = public_set | set(('p', 'q', 'd', 'u'))
        if input_set not in (private_set, public_set):
            raise ValueError("Some RSA components are missing")
        for component, value in kwargs.items():
            setattr(self, "_" + component, value)
        if input_set == private_set:
            self._dp = self._d % (self._p - 1)  # = (e⁻¹) mod (p-1)
            self._dq = self._d % (self._q - 1)  # = (e⁻¹) mod (q-1)
            self._invq = None                   # will be computed on demand

    @property
    def n(self):
        return int(self._n)

    @property
    def e(self):
        return int(self._e)

    @property
    def d(self):
        if not self.has_private():
            raise AttributeError("No private exponent available for public keys")
        return int(self._d)

    @property
    def p(self):
        if not self.has_private():
            raise AttributeError("No CRT component 'p' available for public keys")
        return int(self._p)

    @property
    def q(self):
        if not self.has_private():
            raise AttributeError("No CRT component 'q' available for public keys")
        return int(self._q)

    @property
    def dp(self):
        if not self.has_private():
            raise AttributeError("No CRT component 'dp' available for public keys")
        return int(self._dp)

    @property
    def dq(self):
        if not self.has_private():
            raise AttributeError("No CRT component 'dq' available for public keys")
        return int(self._dq)

    @property
    def invq(self):
        if not self.has_private():
            raise AttributeError("No CRT component 'invq' available for public keys")
        if self._invq is None:
            self._invq = self._q.inverse(self._p)
        return int(self._invq)

    @property
    def invp(self):
        return self.u

    @property
    def u(self):
        if not self.has_private():
            raise AttributeError("No CRT component 'u' available for public keys")
        return int(self._u)

    def size_in_bits(self):
        """Size of the RSA modulus in bits"""
        return self._n.size_in_bits()

    def size_in_bytes(self):
        """The minimal amount of bytes that can hold the RSA modulus"""
        return (self._n.size_in_bits() - 1) // 8 + 1

    def _encrypt(self, plaintext):
        if not 0 <= plaintext < self._n:
            raise ValueError("Plaintext too large")
        return int(pow(Integer(plaintext), self._e, self._n))

    def _decrypt_to_bytes(self, ciphertext):
        if not 0 <= ciphertext < self._n:
            raise ValueError("Ciphertext too large")
        if not self.has_private():
            raise TypeError("This is not a private key")

        # Blinded RSA decryption (to prevent timing attacks):
        # Step 1: Generate random secret blinding factor r,
        # such that 0 < r < n-1
        r = Integer.random_range(min_inclusive=1, max_exclusive=self._n)
        # Step 2: Compute c' = c * r**e mod n
        cp = Integer(ciphertext) * pow(r, self._e, self._n) % self._n
        # Step 3: Compute m' = c'**d mod n       (normal RSA decryption)
        m1 = pow(cp, self._dp, self._p)
        m2 = pow(cp, self._dq, self._q)
        h = ((m2 - m1) * self._u) % self._q
        mp = h * self._p + m1
        # Step 4: Compute m = m' * (r**(-1)) mod n
        # then encode into a big endian byte string
        result = Integer._mult_modulo_bytes(
                    r.inverse(self._n),
                    mp,
                    self._n)
        return result

    def _decrypt(self, ciphertext):
        """Legacy private method"""

        return bytes_to_long(self._decrypt_to_bytes(ciphertext))

    def has_private(self):
        """Whether this is an RSA private key"""

        return hasattr(self, "_d")

    def can_encrypt(self):  # legacy
        return True

    def can_sign(self):     # legacy
        return True

    def public_key(self):
        """A matching RSA public key.

        Returns:
            a new :class:`RsaKey` object
        """
        return RsaKey(n=self._n, e=self._e)

    def __eq__(self, other):
        if self.has_private() != other.has_private():
            return False
        if self.n != other.n or self.e != other.e:
            return False
        if not self.has_private():
            return True
        return (self.d == other.d)

    def __ne__(self, other):
        return not (self == other)

    def __getstate__(self):
        # RSA key is not pickable
        from pickle import PicklingError
        raise PicklingError

    def __repr__(self):
        if self.has_private():
            extra = ", d=%d, p=%d, q=%d, u=%d" % (int(self._d), int(self._p),
                                                  int(self._q), int(self._u))
        else:
            extra = ""
        return "RsaKey(n=%d, e=%d%s)" % (int(self._n), int(self._e), extra)

    def __str__(self):
        if self.has_private():
            key_type = "Private"
        else:
            key_type = "Public"
        return "%s RSA key at 0x%X" % (key_type, id(self))

    def export_key(self, format='PEM', passphrase=None, pkcs=1,
                   protection=None, randfunc=None):
        """Export this RSA key.

        Args:
          format (string):
            The format to use for wrapping the key:

            - *'PEM'*. (*Default*) Text encoding, done according to `RFC1421`_/`RFC1423`_.
            - *'DER'*. Binary encoding.
            - *'OpenSSH'*. Textual encoding, done according to OpenSSH specification.
              Only suitable for public keys (not private keys).

          passphrase (string):
            (*For private keys only*) The pass phrase used for protecting the output.

          pkcs (integer):
            (*For private keys only*) The ASN.1 structure to use for
            serializing the key. Note that even in case of PEM
            encoding, there is an inner ASN.1 DER structure.

            With ``pkcs=1`` (*default*), the private key is encoded in a
            simple `PKCS#1`_ structure (``RSAPrivateKey``).

            With ``pkcs=8``, the private key is encoded in a `PKCS#8`_ structure
            (``PrivateKeyInfo``).

            .. note::
                This parameter is ignored for a public key.
                For DER and PEM, an ASN.1 DER ``SubjectPublicKeyInfo``
                structure is always used.

          protection (string):
            (*For private keys only*)
            The encryption scheme to use for protecting the private key.

            If ``None`` (default), the behavior depends on :attr:`format`:

            - For *'DER'*, the *PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC*
              scheme is used. The following operations are performed:

                1. A 16 byte Triple DES key is derived from the passphrase
                   using :func:`Cryptodome.Protocol.KDF.PBKDF2` with 8 bytes salt,
                   and 1 000 iterations of :mod:`Cryptodome.Hash.HMAC`.
                2. The private key is encrypted using CBC.
                3. The encrypted key is encoded according to PKCS#8.

            - For *'PEM'*, the obsolete PEM encryption scheme is used.
              It is based on MD5 for key derivation, and Triple DES for encryption.

            Specifying a value for :attr:`protection` is only meaningful for PKCS#8
            (that is, ``pkcs=8``) and only if a pass phrase is present too.

            The supported schemes for PKCS#8 are listed in the
            :mod:`Cryptodome.IO.PKCS8` module (see :attr:`wrap_algo` parameter).

          randfunc (callable):
            A function that provides random bytes. Only used for PEM encoding.
            The default is :func:`Cryptodome.Random.get_random_bytes`.

        Returns:
          byte string: the encoded key

        Raises:
          ValueError:when the format is unknown or when you try to encrypt a private
            key with *DER* format and PKCS#1.

        .. warning::
            If you don't provide a pass phrase, the private key will be
            exported in the clear!

        .. _RFC1421:    http://www.ietf.org/rfc/rfc1421.txt
        .. _RFC1423:    http://www.ietf.org/rfc/rfc1423.txt
        .. _`PKCS#1`:   http://www.ietf.org/rfc/rfc3447.txt
        .. _`PKCS#8`:   http://www.ietf.org/rfc/rfc5208.txt
        """

        if passphrase is not None:
            passphrase = tobytes(passphrase)

        if randfunc is None:
            randfunc = Random.get_random_bytes

        if format == 'OpenSSH':
            e_bytes, n_bytes = [x.to_bytes() for x in (self._e, self._n)]
            if bord(e_bytes[0]) & 0x80:
                e_bytes = b'\x00' + e_bytes
            if bord(n_bytes[0]) & 0x80:
                n_bytes = b'\x00' + n_bytes
            keyparts = [b'ssh-rsa', e_bytes, n_bytes]
            keystring = b''.join([struct.pack(">I", len(kp)) + kp for kp in keyparts])
            return b'ssh-rsa ' + binascii.b2a_base64(keystring)[:-1]

        # DER format is always used, even in case of PEM, which simply
        # encodes it into BASE64.
        if self.has_private():
            binary_key = DerSequence([0,
                                      self.n,
                                      self.e,
                                      self.d,
                                      self.p,
                                      self.q,
                                      self.d % (self.p-1),
                                      self.d % (self.q-1),
                                      Integer(self.q).inverse(self.p)
                                      ]).encode()
            if pkcs == 1:
                key_type = 'RSA PRIVATE KEY'
                if format == 'DER' and passphrase:
                    raise ValueError("PKCS#1 private key cannot be encrypted")
            else:  # PKCS#8
                from Cryptodome.IO import PKCS8

                if format == 'PEM' and protection is None:
                    key_type = 'PRIVATE KEY'
                    binary_key = PKCS8.wrap(binary_key, oid, None,
                                            key_params=DerNull())
                else:
                    key_type = 'ENCRYPTED PRIVATE KEY'
                    if not protection:
                        protection = 'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC'
                    binary_key = PKCS8.wrap(binary_key, oid,
                                            passphrase, protection,
                                            key_params=DerNull())
                    passphrase = None
        else:
            key_type = "PUBLIC KEY"
            binary_key = _create_subject_public_key_info(oid,
                                                         DerSequence([self.n,
                                                                      self.e]),
                                                         DerNull()
                                                         )

        if format == 'DER':
            return binary_key
        if format == 'PEM':
            from Cryptodome.IO import PEM

            pem_str = PEM.encode(binary_key, key_type, passphrase, randfunc)
            return tobytes(pem_str)

        raise ValueError("Unknown key format '%s'. Cannot export the RSA key." % format)

    # Backward compatibility
    exportKey = export_key
    publickey = public_key

    # Methods defined in PyCryptodome that we don't support anymore
    def sign(self, M, K):
        raise NotImplementedError("Use module Cryptodome.Signature.pkcs1_15 instead")

    def verify(self, M, signature):
        raise NotImplementedError("Use module Cryptodome.Signature.pkcs1_15 instead")

    def encrypt(self, plaintext, K):
        raise NotImplementedError("Use module Cryptodome.Cipher.PKCS1_OAEP instead")

    def decrypt(self, ciphertext):
        raise NotImplementedError("Use module Cryptodome.Cipher.PKCS1_OAEP instead")

    def blind(self, M, B):
        raise NotImplementedError

    def unblind(self, M, B):
        raise NotImplementedError

    def size(self):
        raise NotImplementedError


def generate(bits, randfunc=None, e=65537):
    """Create a new RSA key pair.

    The algorithm closely follows NIST `FIPS 186-4`_ in its
    sections B.3.1 and B.3.3. The modulus is the product of
    two non-strong probable primes.
    Each prime passes a suitable number of Miller-Rabin tests
    with random bases and a single Lucas test.

    Args:
      bits (integer):
        Key length, or size (in bits) of the RSA modulus.
        It must be at least 1024, but **2048 is recommended.**
        The FIPS standard only defines 1024, 2048 and 3072.
      randfunc (callable):
        Function that returns random bytes.
        The default is :func:`Cryptodome.Random.get_random_bytes`.
      e (integer):
        Public RSA exponent. It must be an odd positive integer.
        It is typically a small number with very few ones in its
        binary representation.
        The FIPS standard requires the public exponent to be
        at least 65537 (the default).

    Returns: an RSA key object (:class:`RsaKey`, with private key).

    .. _FIPS 186-4: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
    """

    if bits < 1024:
        raise ValueError("RSA modulus length must be >= 1024")
    if e % 2 == 0 or e < 3:
        raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.")

    if randfunc is None:
        randfunc = Random.get_random_bytes

    d = n = Integer(1)
    e = Integer(e)

    while n.size_in_bits() != bits and d < (1 << (bits // 2)):
        # Generate the prime factors of n: p and q.
        # By construciton, their product is always
        # 2^{bits-1} < p*q < 2^bits.
        size_q = bits // 2
        size_p = bits - size_q

        min_p = min_q = (Integer(1) << (2 * size_q - 1)).sqrt()
        if size_q != size_p:
            min_p = (Integer(1) << (2 * size_p - 1)).sqrt()

        def filter_p(candidate):
            return candidate > min_p and (candidate - 1).gcd(e) == 1

        p = generate_probable_prime(exact_bits=size_p,
                                    randfunc=randfunc,
                                    prime_filter=filter_p)

        min_distance = Integer(1) << (bits // 2 - 100)

        def filter_q(candidate):
            return (candidate > min_q and
                    (candidate - 1).gcd(e) == 1 and
                    abs(candidate - p) > min_distance)

        q = generate_probable_prime(exact_bits=size_q,
                                    randfunc=randfunc,
                                    prime_filter=filter_q)

        n = p * q
        lcm = (p - 1).lcm(q - 1)
        d = e.inverse(lcm)

    if p > q:
        p, q = q, p

    u = p.inverse(q)

    return RsaKey(n=n, e=e, d=d, p=p, q=q, u=u)


def construct(rsa_components, consistency_check=True):
    r"""Construct an RSA key from a tuple of valid RSA components.

    The modulus **n** must be the product of two primes.
    The public exponent **e** must be odd and larger than 1.

    In case of a private key, the following equations must apply:

    .. math::

        \begin{align}
        p*q &= n \\
        e*d &\equiv 1 ( \text{mod lcm} [(p-1)(q-1)]) \\
        p*u &\equiv 1 ( \text{mod } q)
        \end{align}

    Args:
        rsa_components (tuple):
            A tuple of integers, with at least 2 and no
            more than 6 items. The items come in the following order:

            1. RSA modulus *n*.
            2. Public exponent *e*.
            3. Private exponent *d*.
               Only required if the key is private.
            4. First factor of *n* (*p*).
               Optional, but the other factor *q* must also be present.
            5. Second factor of *n* (*q*). Optional.
            6. CRT coefficient *q*, that is :math:`p^{-1} \text{mod }q`. Optional.

        consistency_check (boolean):
            If ``True``, the library will verify that the provided components
            fulfil the main RSA properties.

    Raises:
        ValueError: when the key being imported fails the most basic RSA validity checks.

    Returns: An RSA key object (:class:`RsaKey`).
    """

    class InputComps(object):
        pass

    input_comps = InputComps()
    for (comp, value) in zip(('n', 'e', 'd', 'p', 'q', 'u'), rsa_components):
        setattr(input_comps, comp, Integer(value))

    n = input_comps.n
    e = input_comps.e
    if not hasattr(input_comps, 'd'):
        key = RsaKey(n=n, e=e)
    else:
        d = input_comps.d
        if hasattr(input_comps, 'q'):
            p = input_comps.p
            q = input_comps.q
        else:
            # Compute factors p and q from the private exponent d.
            # We assume that n has no more than two factors.
            # See 8.2.2(i) in Handbook of Applied Cryptography.
            ktot = d * e - 1
            # The quantity d*e-1 is a multiple of phi(n), even,
            # and can be represented as t*2^s.
            t = ktot
            while t % 2 == 0:
                t //= 2
            # Cycle through all multiplicative inverses in Zn.
            # The algorithm is non-deterministic, but there is a 50% chance
            # any candidate a leads to successful factoring.
            # See "Digitalized Signatures and Public Key Functions as Intractable
            # as Factorization", M. Rabin, 1979
            spotted = False
            a = Integer(2)
            while not spotted and a < 100:
                k = Integer(t)
                # Cycle through all values a^{t*2^i}=a^k
                while k < ktot:
                    cand = pow(a, k, n)
                    # Check if a^k is a non-trivial root of unity (mod n)
                    if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
                        # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                        # Either of the terms divides n.
                        p = Integer(n).gcd(cand + 1)
                        spotted = True
                        break
                    k *= 2
                # This value was not any good... let's try another!
                a += 2
            if not spotted:
                raise ValueError("Unable to compute factors p and q from exponent d.")
            # Found !
            assert ((n % p) == 0)
            q = n // p

        if hasattr(input_comps, 'u'):
            u = input_comps.u
        else:
            u = p.inverse(q)

        # Build key object
        key = RsaKey(n=n, e=e, d=d, p=p, q=q, u=u)

    # Verify consistency of the key
    if consistency_check:

        # Modulus and public exponent must be coprime
        if e <= 1 or e >= n:
            raise ValueError("Invalid RSA public exponent")
        if Integer(n).gcd(e) != 1:
            raise ValueError("RSA public exponent is not coprime to modulus")

        # For RSA, modulus must be odd
        if not n & 1:
            raise ValueError("RSA modulus is not odd")

        if key.has_private():
            # Modulus and private exponent must be coprime
            if d <= 1 or d >= n:
                raise ValueError("Invalid RSA private exponent")
            if Integer(n).gcd(d) != 1:
                raise ValueError("RSA private exponent is not coprime to modulus")
            # Modulus must be product of 2 primes
            if p * q != n:
                raise ValueError("RSA factors do not match modulus")
            if test_probable_prime(p) == COMPOSITE:
                raise ValueError("RSA factor p is composite")
            if test_probable_prime(q) == COMPOSITE:
                raise ValueError("RSA factor q is composite")
            # See Carmichael theorem
            phi = (p - 1) * (q - 1)
            lcm = phi // (p - 1).gcd(q - 1)
            if (e * d % int(lcm)) != 1:
                raise ValueError("Invalid RSA condition")
            if hasattr(key, 'u'):
                # CRT coefficient
                if u <= 1 or u >= q:
                    raise ValueError("Invalid RSA component u")
                if (p * u % q) != 1:
                    raise ValueError("Invalid RSA component u with p")

    return key


def _import_pkcs1_private(encoded, *kwargs):
    # RSAPrivateKey ::= SEQUENCE {
    #           version Version,
    #           modulus INTEGER, -- n
    #           publicExponent INTEGER, -- e
    #           privateExponent INTEGER, -- d
    #           prime1 INTEGER, -- p
    #           prime2 INTEGER, -- q
    #           exponent1 INTEGER, -- d mod (p-1)
    #           exponent2 INTEGER, -- d mod (q-1)
    #           coefficient INTEGER -- (inverse of q) mod p
    # }
    #
    # Version ::= INTEGER
    der = DerSequence().decode(encoded, nr_elements=9, only_ints_expected=True)
    if der[0] != 0:
        raise ValueError("No PKCS#1 encoding of an RSA private key")
    return construct(der[1:6] + [Integer(der[4]).inverse(der[5])])


def _import_pkcs1_public(encoded, *kwargs):
    # RSAPublicKey ::= SEQUENCE {
    #           modulus INTEGER, -- n
    #           publicExponent INTEGER -- e
    # }
    der = DerSequence().decode(encoded, nr_elements=2, only_ints_expected=True)
    return construct(der)


def _import_subjectPublicKeyInfo(encoded, *kwargs):

    algoid, encoded_key, params = _expand_subject_public_key_info(encoded)
    if algoid != oid or params is not None:
        raise ValueError("No RSA subjectPublicKeyInfo")
    return _import_pkcs1_public(encoded_key)


def _import_x509_cert(encoded, *kwargs):

    sp_info = _extract_subject_public_key_info(encoded)
    return _import_subjectPublicKeyInfo(sp_info)


def _import_pkcs8(encoded, passphrase):
    from Cryptodome.IO import PKCS8

    k = PKCS8.unwrap(encoded, passphrase)
    if k[0] != oid:
        raise ValueError("No PKCS#8 encoded RSA key")
    return _import_keyDER(k[1], passphrase)


def _import_keyDER(extern_key, passphrase):
    """Import an RSA key (public or private half), encoded in DER form."""

    decodings = (_import_pkcs1_private,
                 _import_pkcs1_public,
                 _import_subjectPublicKeyInfo,
                 _import_x509_cert,
                 _import_pkcs8)

    for decoding in decodings:
        try:
            return decoding(extern_key, passphrase)
        except ValueError:
            pass

    raise ValueError("RSA key format is not supported")


def _import_openssh_private_rsa(data, password):

    from ._openssh import (import_openssh_private_generic,
                           read_bytes, read_string, check_padding)

    ssh_name, decrypted = import_openssh_private_generic(data, password)

    if ssh_name != "ssh-rsa":
        raise ValueError("This SSH key is not RSA")

    n, decrypted = read_bytes(decrypted)
    e, decrypted = read_bytes(decrypted)
    d, decrypted = read_bytes(decrypted)
    iqmp, decrypted = read_bytes(decrypted)
    p, decrypted = read_bytes(decrypted)
    q, decrypted = read_bytes(decrypted)

    _, padded = read_string(decrypted)  # Comment
    check_padding(padded)

    build = [Integer.from_bytes(x) for x in (n, e, d, q, p, iqmp)]
    return construct(build)


def import_key(extern_key, passphrase=None):
    """Import an RSA key (public or private).

    Args:
      extern_key (string or byte string):
        The RSA key to import.

        The following formats are supported for an RSA **public key**:

        - X.509 certificate (binary or PEM format)
        - X.509 ``subjectPublicKeyInfo`` DER SEQUENCE (binary or PEM
          encoding)
        - `PKCS#1`_ ``RSAPublicKey`` DER SEQUENCE (binary or PEM encoding)
        - An OpenSSH line (e.g. the content of ``~/.ssh/id_ecdsa``, ASCII)

        The following formats are supported for an RSA **private key**:

        - PKCS#1 ``RSAPrivateKey`` DER SEQUENCE (binary or PEM encoding)
        - `PKCS#8`_ ``PrivateKeyInfo`` or ``EncryptedPrivateKeyInfo``
          DER SEQUENCE (binary or PEM encoding)
        - OpenSSH (text format, introduced in `OpenSSH 6.5`_)

        For details about the PEM encoding, see `RFC1421`_/`RFC1423`_.

      passphrase (string or byte string):
        For private keys only, the pass phrase that encrypts the key.

    Returns: An RSA key object (:class:`RsaKey`).

    Raises:
      ValueError/IndexError/TypeError:
        When the given key cannot be parsed (possibly because the pass
        phrase is wrong).

    .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
    .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
    .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
    .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
    .. _`OpenSSH 6.5`: https://flak.tedunangst.com/post/new-openssh-key-format-and-bcrypt-pbkdf
    """

    from Cryptodome.IO import PEM

    extern_key = tobytes(extern_key)
    if passphrase is not None:
        passphrase = tobytes(passphrase)

    if extern_key.startswith(b'-----BEGIN OPENSSH PRIVATE KEY'):
        text_encoded = tostr(extern_key)
        openssh_encoded, marker, enc_flag = PEM.decode(text_encoded, passphrase)
        result = _import_openssh_private_rsa(openssh_encoded, passphrase)
        return result

    if extern_key.startswith(b'-----'):
        # This is probably a PEM encoded key.
        (der, marker, enc_flag) = PEM.decode(tostr(extern_key), passphrase)
        if enc_flag:
            passphrase = None
        return _import_keyDER(der, passphrase)

    if extern_key.startswith(b'ssh-rsa '):
        # This is probably an OpenSSH key
        keystring = binascii.a2b_base64(extern_key.split(b' ')[1])
        keyparts = []
        while len(keystring) > 4:
            length = struct.unpack(">I", keystring[:4])[0]
            keyparts.append(keystring[4:4 + length])
            keystring = keystring[4 + length:]
        e = Integer.from_bytes(keyparts[1])
        n = Integer.from_bytes(keyparts[2])
        return construct([n, e])

    if len(extern_key) > 0 and bord(extern_key[0]) == 0x30:
        # This is probably a DER encoded key
        return _import_keyDER(extern_key, passphrase)

    raise ValueError("RSA key format is not supported")


# Backward compatibility
importKey = import_key

#: `Object ID`_ for the RSA encryption algorithm. This OID often indicates
#: a generic RSA key, even when such key will be actually used for digital
#: signatures.
#:
#: .. _`Object ID`: http://www.alvestrand.no/objectid/1.2.840.113549.1.1.1.html
oid = "1.2.840.113549.1.1.1"

Zerion Mini Shell 1.0