Mini Shell
# ===================================================================
#
# Copyright (c) 2022, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
import unittest
from binascii import unhexlify
from Crypto.SelfTest.st_common import list_test_cases
from Crypto.SelfTest.loader import load_test_vectors
from Crypto.PublicKey import ECC
from Crypto.PublicKey.ECC import EccPoint, _curves, EccKey
from Crypto.Math.Numbers import Integer
from Crypto.Hash import SHAKE128
class TestEccPoint_Ed25519(unittest.TestCase):
Gxy = {"x": 15112221349535400772501151409588531511454012693041857206046113283949847762202,
"y": 46316835694926478169428394003475163141307993866256225615783033603165251855960}
G2xy = {"x": 24727413235106541002554574571675588834622768167397638456726423682521233608206,
"y": 15549675580280190176352668710449542251549572066445060580507079593062643049417}
G3xy = {"x": 46896733464454938657123544595386787789046198280132665686241321779790909858396,
"y": 8324843778533443976490377120369201138301417226297555316741202210403726505172}
pointG = EccPoint(Gxy['x'], Gxy['y'], curve="Ed25519")
pointG2 = EccPoint(G2xy['x'], G2xy['y'], curve="Ed25519")
pointG3 = EccPoint(G3xy['x'], G3xy['y'], curve="Ed25519")
def test_init_xy(self):
EccPoint(self.Gxy['x'], self.Gxy['y'], curve="Ed25519")
# Neutral point
pai = EccPoint(0, 1, curve="Ed25519")
self.assertEqual(pai.x, 0)
self.assertEqual(pai.y, 1)
self.assertEqual(pai.xy, (0, 1))
# G
bp = self.pointG.copy()
self.assertEqual(bp.x, 15112221349535400772501151409588531511454012693041857206046113283949847762202)
self.assertEqual(bp.y, 46316835694926478169428394003475163141307993866256225615783033603165251855960)
self.assertEqual(bp.xy, (bp.x, bp.y))
# 2G
bp2 = self.pointG2.copy()
self.assertEqual(bp2.x, 24727413235106541002554574571675588834622768167397638456726423682521233608206)
self.assertEqual(bp2.y, 15549675580280190176352668710449542251549572066445060580507079593062643049417)
self.assertEqual(bp2.xy, (bp2.x, bp2.y))
# 5G
EccPoint(x=33467004535436536005251147249499675200073690106659565782908757308821616914995,
y=43097193783671926753355113395909008640284023746042808659097434958891230611693,
curve="Ed25519")
# Catch if point is not on the curve
self.assertRaises(ValueError, EccPoint, 34, 35, curve="Ed25519")
def test_set(self):
pointW = EccPoint(0, 1, curve="Ed25519")
pointW.set(self.pointG)
self.assertEqual(pointW.x, self.pointG.x)
self.assertEqual(pointW.y, self.pointG.y)
def test_copy(self):
pointW = self.pointG.copy()
self.assertEqual(pointW.x, self.pointG.x)
self.assertEqual(pointW.y, self.pointG.y)
def test_equal(self):
pointH = self.pointG.copy()
pointI = self.pointG2.copy()
self.assertEqual(self.pointG, pointH)
self.assertNotEqual(self.pointG, pointI)
def test_pai(self):
pai = EccPoint(0, 1, curve="Ed25519")
self.assertTrue(pai.is_point_at_infinity())
self.assertEqual(pai, pai.point_at_infinity())
def test_negate(self):
negG = -self.pointG
sum = self.pointG + negG
self.assertTrue(sum.is_point_at_infinity())
def test_addition(self):
self.assertEqual(self.pointG + self.pointG2, self.pointG3)
self.assertEqual(self.pointG2 + self.pointG, self.pointG3)
self.assertEqual(self.pointG2 + self.pointG.point_at_infinity(), self.pointG2)
self.assertEqual(self.pointG.point_at_infinity() + self.pointG2, self.pointG2)
G5 = self.pointG2 + self.pointG3
self.assertEqual(G5.x, 33467004535436536005251147249499675200073690106659565782908757308821616914995)
self.assertEqual(G5.y, 43097193783671926753355113395909008640284023746042808659097434958891230611693)
def test_inplace_addition(self):
pointH = self.pointG.copy()
pointH += self.pointG
self.assertEqual(pointH, self.pointG2)
pointH += self.pointG
self.assertEqual(pointH, self.pointG3)
pointH += self.pointG.point_at_infinity()
self.assertEqual(pointH, self.pointG3)
def test_doubling(self):
pointH = self.pointG.copy()
pointH.double()
self.assertEqual(pointH.x, self.pointG2.x)
self.assertEqual(pointH.y, self.pointG2.y)
# 2*0
pai = self.pointG.point_at_infinity()
pointR = pai.copy()
pointR.double()
self.assertEqual(pointR, pai)
def test_scalar_multiply(self):
d = 0
pointH = d * self.pointG
self.assertEqual(pointH.x, 0)
self.assertEqual(pointH.y, 1)
d = 1
pointH = d * self.pointG
self.assertEqual(pointH.x, self.pointG.x)
self.assertEqual(pointH.y, self.pointG.y)
d = 2
pointH = d * self.pointG
self.assertEqual(pointH.x, self.pointG2.x)
self.assertEqual(pointH.y, self.pointG2.y)
d = 3
pointH = d * self.pointG
self.assertEqual(pointH.x, self.pointG3.x)
self.assertEqual(pointH.y, self.pointG3.y)
d = 4
pointH = d * self.pointG
self.assertEqual(pointH.x, 14582954232372986451776170844943001818709880559417862259286374126315108956272)
self.assertEqual(pointH.y, 32483318716863467900234833297694612235682047836132991208333042722294373421359)
d = 5
pointH = d * self.pointG
self.assertEqual(pointH.x, 33467004535436536005251147249499675200073690106659565782908757308821616914995)
self.assertEqual(pointH.y, 43097193783671926753355113395909008640284023746042808659097434958891230611693)
d = 10
pointH = d * self.pointG
self.assertEqual(pointH.x, 43500613248243327786121022071801015118933854441360174117148262713429272820047)
self.assertEqual(pointH.y, 45005105423099817237495816771148012388779685712352441364231470781391834741548)
d = 20
pointH = d * self.pointG
self.assertEqual(pointH.x, 46694936775300686710656303283485882876784402425210400817529601134760286812591)
self.assertEqual(pointH.y, 8786390172762935853260670851718824721296437982862763585171334833968259029560)
d = 255
pointH = d * self.pointG
self.assertEqual(pointH.x, 36843863416400016952258312492144504209624961884991522125275155377549541182230)
self.assertEqual(pointH.y, 22327030283879720808995671630924669697661065034121040761798775626517750047180)
d = 256
pointH = d * self.pointG
self.assertEqual(pointH.x, 42740085206947573681423002599456489563927820004573071834350074001818321593686)
self.assertEqual(pointH.y, 6935684722522267618220753829624209639984359598320562595061366101608187623111)
def test_sizes(self):
self.assertEqual(self.pointG.size_in_bits(), 255)
self.assertEqual(self.pointG.size_in_bytes(), 32)
class TestEccKey_Ed25519(unittest.TestCase):
def test_private_key(self):
seed = unhexlify("9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60")
Px = 38815646466658113194383306759739515082307681141926459231621296960732224964046
Py = 11903303657706407974989296177215005343713679411332034699907763981919547054807
key = EccKey(curve="Ed25519", seed=seed)
self.assertEqual(key.seed, seed)
self.assertEqual(key.d, 36144925721603087658594284515452164870581325872720374094707712194495455132720)
self.assertTrue(key.has_private())
self.assertEqual(key.pointQ.x, Px)
self.assertEqual(key.pointQ.y, Py)
point = EccPoint(Px, Py, "ed25519")
key = EccKey(curve="Ed25519", seed=seed, point=point)
self.assertEqual(key.d, 36144925721603087658594284515452164870581325872720374094707712194495455132720)
self.assertTrue(key.has_private())
self.assertEqual(key.pointQ, point)
# Other names
key = EccKey(curve="ed25519", seed=seed)
# Must not accept d parameter
self.assertRaises(ValueError, EccKey, curve="ed25519", d=1)
def test_public_key(self):
point = EccPoint(_curves['ed25519'].Gx, _curves['ed25519'].Gy, curve='ed25519')
key = EccKey(curve="ed25519", point=point)
self.assertFalse(key.has_private())
self.assertEqual(key.pointQ, point)
def test_public_key_derived(self):
priv_key = EccKey(curve="ed25519", seed=b'H'*32)
pub_key = priv_key.public_key()
self.assertFalse(pub_key.has_private())
self.assertEqual(priv_key.pointQ, pub_key.pointQ)
def test_invalid_seed(self):
self.assertRaises(ValueError, lambda: EccKey(curve="ed25519", seed=b'H' * 31))
def test_equality(self):
private_key = ECC.construct(seed=b'H'*32, curve="Ed25519")
private_key2 = ECC.construct(seed=b'H'*32, curve="ed25519")
private_key3 = ECC.construct(seed=b'C'*32, curve="Ed25519")
public_key = private_key.public_key()
public_key2 = private_key2.public_key()
public_key3 = private_key3.public_key()
self.assertEqual(private_key, private_key2)
self.assertNotEqual(private_key, private_key3)
self.assertEqual(public_key, public_key2)
self.assertNotEqual(public_key, public_key3)
self.assertNotEqual(public_key, private_key)
def test_name_consistency(self):
key = ECC.generate(curve='ed25519')
self.assertIn("curve='Ed25519'", repr(key))
self.assertEqual(key.curve, 'Ed25519')
self.assertEqual(key.public_key().curve, 'Ed25519')
class TestEccModule_Ed25519(unittest.TestCase):
def test_generate(self):
key = ECC.generate(curve="Ed25519")
self.assertTrue(key.has_private())
point = EccPoint(_curves['Ed25519'].Gx, _curves['Ed25519'].Gy, curve="Ed25519") * key.d
self.assertEqual(key.pointQ, point)
# Always random
key2 = ECC.generate(curve="Ed25519")
self.assertNotEqual(key, key2)
# Other names
ECC.generate(curve="Ed25519")
# Random source
key1 = ECC.generate(curve="Ed25519", randfunc=SHAKE128.new().read)
key2 = ECC.generate(curve="Ed25519", randfunc=SHAKE128.new().read)
self.assertEqual(key1, key2)
def test_construct(self):
seed = unhexlify("9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60")
Px = 38815646466658113194383306759739515082307681141926459231621296960732224964046
Py = 11903303657706407974989296177215005343713679411332034699907763981919547054807
d = 36144925721603087658594284515452164870581325872720374094707712194495455132720
point = EccPoint(Px, Py, curve="Ed25519")
# Private key only
key = ECC.construct(curve="Ed25519", seed=seed)
self.assertEqual(key.pointQ, point)
self.assertTrue(key.has_private())
# Public key only
key = ECC.construct(curve="Ed25519", point_x=Px, point_y=Py)
self.assertEqual(key.pointQ, point)
self.assertFalse(key.has_private())
# Private and public key
key = ECC.construct(curve="Ed25519", seed=seed, point_x=Px, point_y=Py)
self.assertEqual(key.pointQ, point)
self.assertTrue(key.has_private())
# Other names
key = ECC.construct(curve="ed25519", seed=seed)
def test_negative_construct(self):
coord = dict(point_x=10, point_y=4)
coordG = dict(point_x=_curves['ed25519'].Gx, point_y=_curves['ed25519'].Gy)
self.assertRaises(ValueError, ECC.construct, curve="Ed25519", **coord)
self.assertRaises(ValueError, ECC.construct, curve="Ed25519", d=2, **coordG)
self.assertRaises(ValueError, ECC.construct, curve="Ed25519", seed=b'H'*31)
def get_tests(config={}):
tests = []
tests += list_test_cases(TestEccPoint_Ed25519)
tests += list_test_cases(TestEccKey_Ed25519)
tests += list_test_cases(TestEccModule_Ed25519)
return tests
if __name__ == '__main__':
def suite():
return unittest.TestSuite(get_tests())
unittest.main(defaultTest='suite')
Zerion Mini Shell 1.0