Mini Shell
# -*- test-case-name: twisted.conch.test.test_transport -*-
# Copyright (c) Twisted Matrix Laboratories.
# See LICENSE for details.
"""
The lowest level SSH protocol. This handles the key negotiation, the
encryption and the compression. The transport layer is described in
RFC 4253.
Maintainer: Paul Swartz
"""
import binascii
import hmac
import struct
import zlib
from hashlib import md5, sha1, sha256, sha384, sha512
from typing import Dict
from cryptography.exceptions import UnsupportedAlgorithm
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import dh, ec, x25519
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from twisted import __version__ as twisted_version
from twisted.conch.ssh import _kex, address, keys
from twisted.conch.ssh.common import MP, NS, ffs, getMP, getNS
from twisted.internet import defer, protocol
from twisted.logger import Logger
from twisted.python import randbytes
from twisted.python.compat import iterbytes, networkString
# This import is needed if SHA256 hashing is used.
# from twisted.python.compat import nativeString
def _mpFromBytes(data):
"""Make an SSH multiple-precision integer from big-endian L{bytes}.
Used in ECDH key exchange.
@type data: L{bytes}
@param data: The input data, interpreted as a big-endian octet string.
@rtype: L{bytes}
@return: The given data encoded as an SSH multiple-precision integer.
"""
return MP(int.from_bytes(data, "big"))
class _MACParams(tuple):
"""
L{_MACParams} represents the parameters necessary to compute SSH MAC
(Message Authenticate Codes).
L{_MACParams} is a L{tuple} subclass to maintain compatibility with older
versions of the code. The elements of a L{_MACParams} are::
0. The digest object used for the MAC
1. The inner pad ("ipad") string
2. The outer pad ("opad") string
3. The size of the digest produced by the digest object
L{_MACParams} is also an object lesson in why tuples are a bad type for
public APIs.
@ivar key: The HMAC key which will be used.
"""
class SSHCiphers:
"""
SSHCiphers represents all the encryption operations that need to occur
to encrypt and authenticate the SSH connection.
@cvar cipherMap: A dictionary mapping SSH encryption names to 3-tuples of
(<cryptography.hazmat.primitives.interfaces.CipherAlgorithm>,
<block size>, <cryptography.hazmat.primitives.interfaces.Mode>)
@cvar macMap: A dictionary mapping SSH MAC names to hash modules.
@ivar outCipType: the string type of the outgoing cipher.
@ivar inCipType: the string type of the incoming cipher.
@ivar outMACType: the string type of the incoming MAC.
@ivar inMACType: the string type of the incoming MAC.
@ivar encBlockSize: the block size of the outgoing cipher.
@ivar decBlockSize: the block size of the incoming cipher.
@ivar verifyDigestSize: the size of the incoming MAC.
@ivar outMAC: a tuple of (<hash module>, <inner key>, <outer key>,
<digest size>) representing the outgoing MAC.
@ivar inMAc: see outMAC, but for the incoming MAC.
"""
cipherMap = {
b"3des-cbc": (algorithms.TripleDES, 24, modes.CBC),
b"blowfish-cbc": (algorithms.Blowfish, 16, modes.CBC),
b"aes256-cbc": (algorithms.AES, 32, modes.CBC),
b"aes192-cbc": (algorithms.AES, 24, modes.CBC),
b"aes128-cbc": (algorithms.AES, 16, modes.CBC),
b"cast128-cbc": (algorithms.CAST5, 16, modes.CBC),
b"aes128-ctr": (algorithms.AES, 16, modes.CTR),
b"aes192-ctr": (algorithms.AES, 24, modes.CTR),
b"aes256-ctr": (algorithms.AES, 32, modes.CTR),
b"3des-ctr": (algorithms.TripleDES, 24, modes.CTR),
b"blowfish-ctr": (algorithms.Blowfish, 16, modes.CTR),
b"cast128-ctr": (algorithms.CAST5, 16, modes.CTR),
b"none": (None, 0, modes.CBC),
}
macMap = {
b"hmac-sha2-512": sha512,
b"hmac-sha2-384": sha384,
b"hmac-sha2-256": sha256,
b"hmac-sha1": sha1,
b"hmac-md5": md5,
b"none": None,
}
def __init__(self, outCip, inCip, outMac, inMac):
self.outCipType = outCip
self.inCipType = inCip
self.outMACType = outMac
self.inMACType = inMac
self.encBlockSize = 0
self.decBlockSize = 0
self.verifyDigestSize = 0
self.outMAC = (None, b"", b"", 0)
self.inMAC = (None, b"", b"", 0)
def setKeys(self, outIV, outKey, inIV, inKey, outInteg, inInteg):
"""
Set up the ciphers and hashes using the given keys,
@param outIV: the outgoing initialization vector
@param outKey: the outgoing encryption key
@param inIV: the incoming initialization vector
@param inKey: the incoming encryption key
@param outInteg: the outgoing integrity key
@param inInteg: the incoming integrity key.
"""
o = self._getCipher(self.outCipType, outIV, outKey)
self.encryptor = o.encryptor()
self.encBlockSize = o.algorithm.block_size // 8
o = self._getCipher(self.inCipType, inIV, inKey)
self.decryptor = o.decryptor()
self.decBlockSize = o.algorithm.block_size // 8
self.outMAC = self._getMAC(self.outMACType, outInteg)
self.inMAC = self._getMAC(self.inMACType, inInteg)
if self.inMAC:
self.verifyDigestSize = self.inMAC[3]
def _getCipher(self, cip, iv, key):
"""
Creates an initialized cipher object.
@param cip: the name of the cipher, maps into cipherMap
@param iv: the initialzation vector
@param key: the encryption key
@return: the cipher object.
"""
algorithmClass, keySize, modeClass = self.cipherMap[cip]
if algorithmClass is None:
return _DummyCipher()
return Cipher(
algorithmClass(key[:keySize]),
modeClass(iv[: algorithmClass.block_size // 8]),
backend=default_backend(),
)
def _getMAC(self, mac, key):
"""
Gets a 4-tuple representing the message authentication code.
(<hash module>, <inner hash value>, <outer hash value>,
<digest size>)
@type mac: L{bytes}
@param mac: a key mapping into macMap
@type key: L{bytes}
@param key: the MAC key.
@rtype: L{bytes}
@return: The MAC components.
"""
mod = self.macMap[mac]
if not mod:
return (None, b"", b"", 0)
# With stdlib we can only get attributes fron an instantiated object.
hashObject = mod()
digestSize = hashObject.digest_size
blockSize = hashObject.block_size
# Truncation here appears to contravene RFC 2104, section 2. However,
# implementing the hashing behavior prescribed by the RFC breaks
# interoperability with OpenSSH (at least version 5.5p1).
key = key[:digestSize] + (b"\x00" * (blockSize - digestSize))
i = key.translate(hmac.trans_36)
o = key.translate(hmac.trans_5C)
result = _MACParams((mod, i, o, digestSize))
result.key = key
return result
def encrypt(self, blocks):
"""
Encrypt some data.
@type blocks: L{bytes}
@param blocks: The data to encrypt.
@rtype: L{bytes}
@return: The encrypted data.
"""
return self.encryptor.update(blocks)
def decrypt(self, blocks):
"""
Decrypt some data.
@type blocks: L{bytes}
@param blocks: The data to decrypt.
@rtype: L{bytes}
@return: The decrypted data.
"""
return self.decryptor.update(blocks)
def makeMAC(self, seqid, data):
"""
Create a message authentication code (MAC) for the given packet using
the outgoing MAC values.
@type seqid: L{int}
@param seqid: The sequence ID of the outgoing packet.
@type data: L{bytes}
@param data: The data to create a MAC for.
@rtype: L{str}
@return: The serialized MAC.
"""
if not self.outMAC[0]:
return b""
data = struct.pack(">L", seqid) + data
return hmac.HMAC(self.outMAC.key, data, self.outMAC[0]).digest()
def verify(self, seqid, data, mac):
"""
Verify an incoming MAC using the incoming MAC values.
@type seqid: L{int}
@param seqid: The sequence ID of the incoming packet.
@type data: L{bytes}
@param data: The packet data to verify.
@type mac: L{bytes}
@param mac: The MAC sent with the packet.
@rtype: L{bool}
@return: C{True} if the MAC is valid.
"""
if not self.inMAC[0]:
return mac == b""
data = struct.pack(">L", seqid) + data
outer = hmac.HMAC(self.inMAC.key, data, self.inMAC[0]).digest()
return hmac.compare_digest(mac, outer)
def _getSupportedCiphers():
"""
Build a list of ciphers that are supported by the backend in use.
@return: a list of supported ciphers.
@rtype: L{list} of L{str}
"""
supportedCiphers = []
cs = [
b"aes256-ctr",
b"aes256-cbc",
b"aes192-ctr",
b"aes192-cbc",
b"aes128-ctr",
b"aes128-cbc",
b"cast128-ctr",
b"cast128-cbc",
b"blowfish-ctr",
b"blowfish-cbc",
b"3des-ctr",
b"3des-cbc",
]
for cipher in cs:
algorithmClass, keySize, modeClass = SSHCiphers.cipherMap[cipher]
try:
Cipher(
algorithmClass(b" " * keySize),
modeClass(b" " * (algorithmClass.block_size // 8)),
backend=default_backend(),
).encryptor()
except UnsupportedAlgorithm:
pass
else:
supportedCiphers.append(cipher)
return supportedCiphers
class SSHTransportBase(protocol.Protocol):
"""
Protocol supporting basic SSH functionality: sending/receiving packets
and message dispatch. To connect to or run a server, you must use
SSHClientTransport or SSHServerTransport.
@ivar protocolVersion: A string representing the version of the SSH
protocol we support. Currently defaults to '2.0'.
@ivar version: A string representing the version of the server or client.
Currently defaults to 'Twisted'.
@ivar comment: An optional string giving more information about the
server or client.
@ivar supportedCiphers: A list of strings representing the encryption
algorithms supported, in order from most-preferred to least.
@ivar supportedMACs: A list of strings representing the message
authentication codes (hashes) supported, in order from most-preferred
to least. Both this and supportedCiphers can include 'none' to use
no encryption or authentication, but that must be done manually,
@ivar supportedKeyExchanges: A list of strings representing the
key exchanges supported, in order from most-preferred to least.
@ivar supportedPublicKeys: A list of strings representing the
public key algorithms supported, in order from most-preferred to
least.
@ivar supportedCompressions: A list of strings representing compression
types supported, from most-preferred to least.
@ivar supportedLanguages: A list of strings representing languages
supported, from most-preferred to least.
@ivar supportedVersions: A container of strings representing supported ssh
protocol version numbers.
@ivar isClient: A boolean indicating whether this is a client or server.
@ivar gotVersion: A boolean indicating whether we have received the
version string from the other side.
@ivar buf: Data we've received but hasn't been parsed into a packet.
@ivar outgoingPacketSequence: the sequence number of the next packet we
will send.
@ivar incomingPacketSequence: the sequence number of the next packet we
are expecting from the other side.
@ivar outgoingCompression: an object supporting the .compress(str) and
.flush() methods, or None if there is no outgoing compression. Used to
compress outgoing data.
@ivar outgoingCompressionType: A string representing the outgoing
compression type.
@ivar incomingCompression: an object supporting the .decompress(str)
method, or None if there is no incoming compression. Used to
decompress incoming data.
@ivar incomingCompressionType: A string representing the incoming
compression type.
@ivar ourVersionString: the version string that we sent to the other side.
Used in the key exchange.
@ivar otherVersionString: the version string sent by the other side. Used
in the key exchange.
@ivar ourKexInitPayload: the MSG_KEXINIT payload we sent. Used in the key
exchange.
@ivar otherKexInitPayload: the MSG_KEXINIT payload we received. Used in
the key exchange
@ivar sessionID: a string that is unique to this SSH session. Created as
part of the key exchange, sessionID is used to generate the various
encryption and authentication keys.
@ivar service: an SSHService instance, or None. If it's set to an object,
it's the currently running service.
@ivar kexAlg: the agreed-upon key exchange algorithm.
@ivar keyAlg: the agreed-upon public key type for the key exchange.
@ivar currentEncryptions: an SSHCiphers instance. It represents the
current encryption and authentication options for the transport.
@ivar nextEncryptions: an SSHCiphers instance. Held here until the
MSG_NEWKEYS messages are exchanged, when nextEncryptions is
transitioned to currentEncryptions.
@ivar first: the first bytes of the next packet. In order to avoid
decrypting data twice, the first bytes are decrypted and stored until
the whole packet is available.
@ivar _keyExchangeState: The current protocol state with respect to key
exchange. This is either C{_KEY_EXCHANGE_NONE} if no key exchange is
in progress (and returns to this value after any key exchange
completqes), C{_KEY_EXCHANGE_REQUESTED} if this side of the connection
initiated a key exchange, and C{_KEY_EXCHANGE_PROGRESSING} if the other
side of the connection initiated a key exchange. C{_KEY_EXCHANGE_NONE}
is the initial value (however SSH connections begin with key exchange,
so it will quickly change to another state).
@ivar _blockedByKeyExchange: Whenever C{_keyExchangeState} is not
C{_KEY_EXCHANGE_NONE}, this is a C{list} of pending messages which were
passed to L{sendPacket} but could not be sent because it is not legal
to send them while a key exchange is in progress. When the key
exchange completes, another attempt is made to send these messages.
@ivar _peerSupportsExtensions: a boolean indicating whether the other side
of the connection supports RFC 8308 extension negotiation.
@ivar peerExtensions: a dict of extensions supported by the other side of
the connection.
"""
_log = Logger()
protocolVersion = b"2.0"
version = b"Twisted_" + twisted_version.encode("ascii")
comment = b""
ourVersionString = (
b"SSH-" + protocolVersion + b"-" + version + b" " + comment
).strip()
# L{None} is supported as cipher and hmac. For security they are disabled
# by default. To enable them, subclass this class and add it, or do:
# SSHTransportBase.supportedCiphers.append('none')
# List ordered by preference.
supportedCiphers = _getSupportedCiphers()
supportedMACs = [
b"hmac-sha2-512",
b"hmac-sha2-384",
b"hmac-sha2-256",
b"hmac-sha1",
b"hmac-md5",
# `none`,
]
supportedKeyExchanges = _kex.getSupportedKeyExchanges()
supportedPublicKeys = []
# Add the supported EC keys, and change the name from ecdh* to ecdsa*
for eckey in supportedKeyExchanges:
if eckey.find(b"ecdh") != -1:
supportedPublicKeys += [eckey.replace(b"ecdh", b"ecdsa")]
supportedPublicKeys += [b"rsa-sha2-512", b"rsa-sha2-256", b"ssh-rsa", b"ssh-dss"]
if default_backend().ed25519_supported():
supportedPublicKeys.append(b"ssh-ed25519")
supportedCompressions = [b"none", b"zlib"]
supportedLanguages = ()
supportedVersions = (b"1.99", b"2.0")
isClient = False
gotVersion = False
buf = b""
outgoingPacketSequence = 0
incomingPacketSequence = 0
outgoingCompression = None
incomingCompression = None
sessionID = None
service = None
# There is no key exchange activity in progress.
_KEY_EXCHANGE_NONE = "_KEY_EXCHANGE_NONE"
# Key exchange is in progress and we started it.
_KEY_EXCHANGE_REQUESTED = "_KEY_EXCHANGE_REQUESTED"
# Key exchange is in progress and both sides have sent KEXINIT messages.
_KEY_EXCHANGE_PROGRESSING = "_KEY_EXCHANGE_PROGRESSING"
# There is a fourth conceptual state not represented here: KEXINIT received
# but not sent. Since we always send a KEXINIT as soon as we get it, we
# can't ever be in that state.
# The current key exchange state.
_keyExchangeState = _KEY_EXCHANGE_NONE
_blockedByKeyExchange = None
# Added to key exchange algorithms by a client to indicate support for
# extension negotiation.
_EXT_INFO_C = b"ext-info-c"
# Added to key exchange algorithms by a server to indicate support for
# extension negotiation.
_EXT_INFO_S = b"ext-info-s"
_peerSupportsExtensions = False
peerExtensions: Dict[bytes, bytes] = {}
def connectionLost(self, reason):
"""
When the underlying connection is closed, stop the running service (if
any), and log out the avatar (if any).
@type reason: L{twisted.python.failure.Failure}
@param reason: The cause of the connection being closed.
"""
if self.service:
self.service.serviceStopped()
if hasattr(self, "avatar"):
self.logoutFunction()
self._log.info("connection lost")
def connectionMade(self):
"""
Called when the connection is made to the other side. We sent our
version and the MSG_KEXINIT packet.
"""
self.transport.write(self.ourVersionString + b"\r\n")
self.currentEncryptions = SSHCiphers(b"none", b"none", b"none", b"none")
self.currentEncryptions.setKeys(b"", b"", b"", b"", b"", b"")
self.sendKexInit()
def sendKexInit(self):
"""
Send a I{KEXINIT} message to initiate key exchange or to respond to a
key exchange initiated by the peer.
@raise RuntimeError: If a key exchange has already been started and it
is not appropriate to send a I{KEXINIT} message at this time.
@return: L{None}
"""
if self._keyExchangeState != self._KEY_EXCHANGE_NONE:
raise RuntimeError(
"Cannot send KEXINIT while key exchange state is %r"
% (self._keyExchangeState,)
)
supportedKeyExchanges = list(self.supportedKeyExchanges)
# Advertise extension negotiation (RFC 8308, section 2.1). At
# present, the Conch client processes the "server-sig-algs"
# extension (section 3.1), and the Conch server sends that but
# ignores any extensions sent by the client, so strictly speaking at
# the moment we only need to send this in the client case; however,
# there's nothing to forbid the server from sending it as well, and
# doing so makes things easier if it needs to process extensions
# sent by clients in future.
supportedKeyExchanges.append(
self._EXT_INFO_C if self.isClient else self._EXT_INFO_S
)
self.ourKexInitPayload = b"".join(
[
bytes((MSG_KEXINIT,)),
randbytes.secureRandom(16),
NS(b",".join(supportedKeyExchanges)),
NS(b",".join(self.supportedPublicKeys)),
NS(b",".join(self.supportedCiphers)),
NS(b",".join(self.supportedCiphers)),
NS(b",".join(self.supportedMACs)),
NS(b",".join(self.supportedMACs)),
NS(b",".join(self.supportedCompressions)),
NS(b",".join(self.supportedCompressions)),
NS(b",".join(self.supportedLanguages)),
NS(b",".join(self.supportedLanguages)),
b"\000\000\000\000\000",
]
)
self.sendPacket(MSG_KEXINIT, self.ourKexInitPayload[1:])
self._keyExchangeState = self._KEY_EXCHANGE_REQUESTED
self._blockedByKeyExchange = []
def _allowedKeyExchangeMessageType(self, messageType):
"""
Determine if the given message type may be sent while key exchange is
in progress.
@param messageType: The type of message
@type messageType: L{int}
@return: C{True} if the given type of message may be sent while key
exchange is in progress, C{False} if it may not.
@rtype: L{bool}
@see: U{http://tools.ietf.org/html/rfc4253#section-7.1}
"""
# Written somewhat peculularly to reflect the way the specification
# defines the allowed message types.
if 1 <= messageType <= 19:
return messageType not in (
MSG_SERVICE_REQUEST,
MSG_SERVICE_ACCEPT,
MSG_EXT_INFO,
)
if 20 <= messageType <= 29:
return messageType not in (MSG_KEXINIT,)
return 30 <= messageType <= 49
def sendPacket(self, messageType, payload):
"""
Sends a packet. If it's been set up, compress the data, encrypt it,
and authenticate it before sending. If key exchange is in progress and
the message is not part of key exchange, queue it to be sent later.
@param messageType: The type of the packet; generally one of the
MSG_* values.
@type messageType: L{int}
@param payload: The payload for the message.
@type payload: L{str}
"""
if self._keyExchangeState != self._KEY_EXCHANGE_NONE:
if not self._allowedKeyExchangeMessageType(messageType):
self._blockedByKeyExchange.append((messageType, payload))
return
payload = bytes((messageType,)) + payload
if self.outgoingCompression:
payload = self.outgoingCompression.compress(
payload
) + self.outgoingCompression.flush(2)
bs = self.currentEncryptions.encBlockSize
# 4 for the packet length and 1 for the padding length
totalSize = 5 + len(payload)
lenPad = bs - (totalSize % bs)
if lenPad < 4:
lenPad = lenPad + bs
packet = (
struct.pack("!LB", totalSize + lenPad - 4, lenPad)
+ payload
+ randbytes.secureRandom(lenPad)
)
encPacket = self.currentEncryptions.encrypt(
packet
) + self.currentEncryptions.makeMAC(self.outgoingPacketSequence, packet)
self.transport.write(encPacket)
self.outgoingPacketSequence += 1
def getPacket(self):
"""
Try to return a decrypted, authenticated, and decompressed packet
out of the buffer. If there is not enough data, return None.
@rtype: L{str} or L{None}
@return: The decoded packet, if any.
"""
bs = self.currentEncryptions.decBlockSize
ms = self.currentEncryptions.verifyDigestSize
if len(self.buf) < bs:
# Not enough data for a block
return
if not hasattr(self, "first"):
first = self.currentEncryptions.decrypt(self.buf[:bs])
else:
first = self.first
del self.first
packetLen, paddingLen = struct.unpack("!LB", first[:5])
if packetLen > 1048576: # 1024 ** 2
self.sendDisconnect(
DISCONNECT_PROTOCOL_ERROR,
networkString(f"bad packet length {packetLen}"),
)
return
if len(self.buf) < packetLen + 4 + ms:
# Not enough data for a packet
self.first = first
return
if (packetLen + 4) % bs != 0:
self.sendDisconnect(
DISCONNECT_PROTOCOL_ERROR,
networkString(
"bad packet mod (%i%%%i == %i)"
% (packetLen + 4, bs, (packetLen + 4) % bs)
),
)
return
encData, self.buf = self.buf[: 4 + packetLen], self.buf[4 + packetLen :]
packet = first + self.currentEncryptions.decrypt(encData[bs:])
if len(packet) != 4 + packetLen:
self.sendDisconnect(DISCONNECT_PROTOCOL_ERROR, b"bad decryption")
return
if ms:
macData, self.buf = self.buf[:ms], self.buf[ms:]
if not self.currentEncryptions.verify(
self.incomingPacketSequence, packet, macData
):
self.sendDisconnect(DISCONNECT_MAC_ERROR, b"bad MAC")
return
payload = packet[5:-paddingLen]
if self.incomingCompression:
try:
payload = self.incomingCompression.decompress(payload)
except Exception:
# Tolerate any errors in decompression
self._log.failure("Error decompressing payload")
self.sendDisconnect(DISCONNECT_COMPRESSION_ERROR, b"compression error")
return
self.incomingPacketSequence += 1
return payload
def _unsupportedVersionReceived(self, remoteVersion):
"""
Called when an unsupported version of the ssh protocol is received from
the remote endpoint.
@param remoteVersion: remote ssh protocol version which is unsupported
by us.
@type remoteVersion: L{str}
"""
self.sendDisconnect(
DISCONNECT_PROTOCOL_VERSION_NOT_SUPPORTED, b"bad version " + remoteVersion
)
def dataReceived(self, data):
"""
First, check for the version string (SSH-2.0-*). After that has been
received, this method adds data to the buffer, and pulls out any
packets.
@type data: L{bytes}
@param data: The data that was received.
"""
self.buf = self.buf + data
if not self.gotVersion:
if len(self.buf) > 4096:
self.sendDisconnect(
DISCONNECT_CONNECTION_LOST,
b"Peer version string longer than 4KB. "
b"Preventing a denial of service attack.",
)
return
if self.buf.find(b"\n", self.buf.find(b"SSH-")) == -1:
return
# RFC 4253 section 4.2 ask for strict `\r\n` line ending.
# Here we are a bit more relaxed and accept implementations ending
# only in '\n'.
# https://tools.ietf.org/html/rfc4253#section-4.2
lines = self.buf.split(b"\n")
for p in lines:
if p.startswith(b"SSH-"):
self.gotVersion = True
# Since the line was split on '\n' and most of the time
# it uses '\r\n' we may get an extra '\r'.
self.otherVersionString = p.rstrip(b"\r")
remoteVersion = p.split(b"-")[1]
if remoteVersion not in self.supportedVersions:
self._unsupportedVersionReceived(remoteVersion)
return
i = lines.index(p)
self.buf = b"\n".join(lines[i + 1 :])
packet = self.getPacket()
while packet:
messageNum = ord(packet[0:1])
self.dispatchMessage(messageNum, packet[1:])
packet = self.getPacket()
def dispatchMessage(self, messageNum, payload):
"""
Send a received message to the appropriate method.
@type messageNum: L{int}
@param messageNum: The message number.
@type payload: L{bytes}
@param payload: The message payload.
"""
if messageNum < 50 and messageNum in messages:
messageType = messages[messageNum][4:]
f = getattr(self, f"ssh_{messageType}", None)
if f is not None:
f(payload)
else:
self._log.debug(
"couldn't handle {messageType}: {payload!r}",
messageType=messageType,
payload=payload,
)
self.sendUnimplemented()
elif self.service:
self.service.packetReceived(messageNum, payload)
else:
self._log.debug(
"couldn't handle {messageNum}: {payload!r}",
messageNum=messageNum,
payload=payload,
)
self.sendUnimplemented()
def getPeer(self):
"""
Returns an L{SSHTransportAddress} corresponding to the other (peer)
side of this transport.
@return: L{SSHTransportAddress} for the peer
@rtype: L{SSHTransportAddress}
@since: 12.1
"""
return address.SSHTransportAddress(self.transport.getPeer())
def getHost(self):
"""
Returns an L{SSHTransportAddress} corresponding to the this side of
transport.
@return: L{SSHTransportAddress} for the peer
@rtype: L{SSHTransportAddress}
@since: 12.1
"""
return address.SSHTransportAddress(self.transport.getHost())
@property
def kexAlg(self):
"""
The key exchange algorithm name agreed between client and server.
"""
return self._kexAlg
@kexAlg.setter
def kexAlg(self, value):
"""
Set the key exchange algorithm name.
"""
self._kexAlg = value
# Client-initiated rekeying looks like this:
#
# C> MSG_KEXINIT
# S> MSG_KEXINIT
# C> MSG_KEX_DH_GEX_REQUEST or MSG_KEXDH_INIT
# S> MSG_KEX_DH_GEX_GROUP or MSG_KEXDH_REPLY
# C> MSG_KEX_DH_GEX_INIT or --
# S> MSG_KEX_DH_GEX_REPLY or --
# C> MSG_NEWKEYS
# S> MSG_NEWKEYS
#
# Server-initiated rekeying is the same, only the first two messages are
# switched.
def ssh_KEXINIT(self, packet):
"""
Called when we receive a MSG_KEXINIT message. Payload::
bytes[16] cookie
string keyExchangeAlgorithms
string keyAlgorithms
string incomingEncryptions
string outgoingEncryptions
string incomingAuthentications
string outgoingAuthentications
string incomingCompressions
string outgoingCompressions
string incomingLanguages
string outgoingLanguages
bool firstPacketFollows
unit32 0 (reserved)
Starts setting up the key exchange, keys, encryptions, and
authentications. Extended by ssh_KEXINIT in SSHServerTransport and
SSHClientTransport.
@type packet: L{bytes}
@param packet: The message data.
@return: A L{tuple} of negotiated key exchange algorithms, key
algorithms, and unhandled data, or L{None} if something went wrong.
"""
self.otherKexInitPayload = bytes((MSG_KEXINIT,)) + packet
# This is useless to us:
# cookie = packet[: 16]
k = getNS(packet[16:], 10)
strings, rest = k[:-1], k[-1]
(
kexAlgs,
keyAlgs,
encCS,
encSC,
macCS,
macSC,
compCS,
compSC,
langCS,
langSC,
) = (s.split(b",") for s in strings)
# These are the server directions
outs = [encSC, macSC, compSC]
ins = [encCS, macCS, compCS]
if self.isClient:
outs, ins = ins, outs # Switch directions
server = (
self.supportedKeyExchanges,
self.supportedPublicKeys,
self.supportedCiphers,
self.supportedCiphers,
self.supportedMACs,
self.supportedMACs,
self.supportedCompressions,
self.supportedCompressions,
)
client = (kexAlgs, keyAlgs, outs[0], ins[0], outs[1], ins[1], outs[2], ins[2])
if self.isClient:
server, client = client, server
self.kexAlg = ffs(client[0], server[0])
self.keyAlg = ffs(client[1], server[1])
self.nextEncryptions = SSHCiphers(
ffs(client[2], server[2]),
ffs(client[3], server[3]),
ffs(client[4], server[4]),
ffs(client[5], server[5]),
)
self.outgoingCompressionType = ffs(client[6], server[6])
self.incomingCompressionType = ffs(client[7], server[7])
if (
None
in (
self.kexAlg,
self.keyAlg,
self.outgoingCompressionType,
self.incomingCompressionType,
)
# We MUST disconnect if an extension negotiation indication ends
# up being negotiated as a key exchange method (RFC 8308,
# section 2.2).
or self.kexAlg in (self._EXT_INFO_C, self._EXT_INFO_S)
):
self.sendDisconnect(
DISCONNECT_KEY_EXCHANGE_FAILED, b"couldn't match all kex parts"
)
return
if None in self.nextEncryptions.__dict__.values():
self.sendDisconnect(
DISCONNECT_KEY_EXCHANGE_FAILED, b"couldn't match all kex parts"
)
return
self._peerSupportsExtensions = (
self._EXT_INFO_S if self.isClient else self._EXT_INFO_C
) in kexAlgs
self._log.debug(
"kex alg={kexAlg!r} key alg={keyAlg!r}",
kexAlg=self.kexAlg,
keyAlg=self.keyAlg,
)
self._log.debug(
"outgoing: {cip!r} {mac!r} {compression!r}",
cip=self.nextEncryptions.outCipType,
mac=self.nextEncryptions.outMACType,
compression=self.outgoingCompressionType,
)
self._log.debug(
"incoming: {cip!r} {mac!r} {compression!r}",
cip=self.nextEncryptions.inCipType,
mac=self.nextEncryptions.inMACType,
compression=self.incomingCompressionType,
)
if self._keyExchangeState == self._KEY_EXCHANGE_REQUESTED:
self._keyExchangeState = self._KEY_EXCHANGE_PROGRESSING
else:
self.sendKexInit()
return kexAlgs, keyAlgs, rest # For SSHServerTransport to use
def ssh_DISCONNECT(self, packet):
"""
Called when we receive a MSG_DISCONNECT message. Payload::
long code
string description
This means that the other side has disconnected. Pass the message up
and disconnect ourselves.
@type packet: L{bytes}
@param packet: The message data.
"""
reasonCode = struct.unpack(">L", packet[:4])[0]
description, foo = getNS(packet[4:])
self.receiveError(reasonCode, description)
self.transport.loseConnection()
def ssh_IGNORE(self, packet):
"""
Called when we receive a MSG_IGNORE message. No payload.
This means nothing; we simply return.
@type packet: L{bytes}
@param packet: The message data.
"""
def ssh_UNIMPLEMENTED(self, packet):
"""
Called when we receive a MSG_UNIMPLEMENTED message. Payload::
long packet
This means that the other side did not implement one of our packets.
@type packet: L{bytes}
@param packet: The message data.
"""
(seqnum,) = struct.unpack(">L", packet)
self.receiveUnimplemented(seqnum)
def ssh_DEBUG(self, packet):
"""
Called when we receive a MSG_DEBUG message. Payload::
bool alwaysDisplay
string message
string language
This means the other side has passed along some debugging info.
@type packet: L{bytes}
@param packet: The message data.
"""
alwaysDisplay = bool(ord(packet[0:1]))
message, lang, foo = getNS(packet[1:], 2)
self.receiveDebug(alwaysDisplay, message, lang)
def ssh_EXT_INFO(self, packet):
"""
Called when we get a MSG_EXT_INFO message. Payload::
uint32 nr-extensions
repeat the following 2 fields "nr-extensions" times:
string extension-name
string extension-value (binary)
@type packet: L{bytes}
@param packet: The message data.
"""
(numExtensions,) = struct.unpack(">L", packet[:4])
packet = packet[4:]
extensions = {}
for _ in range(numExtensions):
extName, extValue, packet = getNS(packet, 2)
extensions[extName] = extValue
self.peerExtensions = extensions
def setService(self, service):
"""
Set our service to service and start it running. If we were
running a service previously, stop it first.
@type service: C{SSHService}
@param service: The service to attach.
"""
self._log.debug("starting service {service!r}", service=service.name)
if self.service:
self.service.serviceStopped()
self.service = service
service.transport = self
self.service.serviceStarted()
def sendDebug(self, message, alwaysDisplay=False, language=b""):
"""
Send a debug message to the other side.
@param message: the message to send.
@type message: L{str}
@param alwaysDisplay: if True, tell the other side to always
display this message.
@type alwaysDisplay: L{bool}
@param language: optionally, the language the message is in.
@type language: L{str}
"""
self.sendPacket(
MSG_DEBUG, (b"\1" if alwaysDisplay else b"\0") + NS(message) + NS(language)
)
def sendIgnore(self, message):
"""
Send a message that will be ignored by the other side. This is
useful to fool attacks based on guessing packet sizes in the
encrypted stream.
@param message: data to send with the message
@type message: L{str}
"""
self.sendPacket(MSG_IGNORE, NS(message))
def sendUnimplemented(self):
"""
Send a message to the other side that the last packet was not
understood.
"""
seqnum = self.incomingPacketSequence
self.sendPacket(MSG_UNIMPLEMENTED, struct.pack("!L", seqnum))
def sendDisconnect(self, reason, desc):
"""
Send a disconnect message to the other side and then disconnect.
@param reason: the reason for the disconnect. Should be one of the
DISCONNECT_* values.
@type reason: L{int}
@param desc: a descrption of the reason for the disconnection.
@type desc: L{str}
"""
self.sendPacket(MSG_DISCONNECT, struct.pack(">L", reason) + NS(desc) + NS(b""))
self._log.info(
"Disconnecting with error, code {code}\nreason: {description}",
code=reason,
description=desc,
)
self.transport.loseConnection()
def sendExtInfo(self, extensions):
"""
Send an RFC 8308 extension advertisement to the remote peer.
Nothing is sent if the peer doesn't support negotiations.
@type extensions: L{list} of (L{bytes}, L{bytes})
@param extensions: a list of (extension-name, extension-value) pairs.
"""
if self._peerSupportsExtensions:
payload = b"".join(
[struct.pack(">L", len(extensions))]
+ [NS(name) + NS(value) for name, value in extensions]
)
self.sendPacket(MSG_EXT_INFO, payload)
def _startEphemeralDH(self):
"""
Prepares for a Diffie-Hellman key agreement exchange.
Creates an ephemeral keypair in the group defined by (self.g,
self.p) and stores it.
"""
numbers = dh.DHParameterNumbers(self.p, self.g)
parameters = numbers.parameters(default_backend())
self.dhSecretKey = parameters.generate_private_key()
y = self.dhSecretKey.public_key().public_numbers().y
self.dhSecretKeyPublicMP = MP(y)
def _finishEphemeralDH(self, remoteDHpublicKey):
"""
Completes the Diffie-Hellman key agreement started by
_startEphemeralDH, and forgets the ephemeral secret key.
@type remoteDHpublicKey: L{int}
@rtype: L{bytes}
@return: The new shared secret, in SSH C{mpint} format.
"""
remoteKey = dh.DHPublicNumbers(
remoteDHpublicKey, dh.DHParameterNumbers(self.p, self.g)
).public_key(default_backend())
secret = self.dhSecretKey.exchange(remoteKey)
del self.dhSecretKey
# The result of a Diffie-Hellman exchange is an integer, but
# the Cryptography module returns it as bytes in a form that
# is only vaguely documented. We fix it up to match the SSH
# MP-integer format as described in RFC4251.
secret = secret.lstrip(b"\x00")
ch = ord(secret[0:1])
if ch & 0x80: # High bit set?
# Make room for the sign bit
prefix = struct.pack(">L", len(secret) + 1) + b"\x00"
else:
prefix = struct.pack(">L", len(secret))
return prefix + secret
def _getKey(self, c, sharedSecret, exchangeHash):
"""
Get one of the keys for authentication/encryption.
@type c: L{bytes}
@param c: The letter identifying which key this is.
@type sharedSecret: L{bytes}
@param sharedSecret: The shared secret K.
@type exchangeHash: L{bytes}
@param exchangeHash: The hash H from key exchange.
@rtype: L{bytes}
@return: The derived key.
"""
hashProcessor = _kex.getHashProcessor(self.kexAlg)
k1 = hashProcessor(sharedSecret + exchangeHash + c + self.sessionID)
k1 = k1.digest()
k2 = hashProcessor(sharedSecret + exchangeHash + k1).digest()
k3 = hashProcessor(sharedSecret + exchangeHash + k1 + k2).digest()
k4 = hashProcessor(sharedSecret + exchangeHash + k1 + k2 + k3).digest()
return k1 + k2 + k3 + k4
def _keySetup(self, sharedSecret, exchangeHash):
"""
Set up the keys for the connection and sends MSG_NEWKEYS when
finished,
@param sharedSecret: a secret string agreed upon using a Diffie-
Hellman exchange, so it is only shared between
the server and the client.
@type sharedSecret: L{str}
@param exchangeHash: A hash of various data known by both sides.
@type exchangeHash: L{str}
"""
if not self.sessionID:
self.sessionID = exchangeHash
initIVCS = self._getKey(b"A", sharedSecret, exchangeHash)
initIVSC = self._getKey(b"B", sharedSecret, exchangeHash)
encKeyCS = self._getKey(b"C", sharedSecret, exchangeHash)
encKeySC = self._getKey(b"D", sharedSecret, exchangeHash)
integKeyCS = self._getKey(b"E", sharedSecret, exchangeHash)
integKeySC = self._getKey(b"F", sharedSecret, exchangeHash)
outs = [initIVSC, encKeySC, integKeySC]
ins = [initIVCS, encKeyCS, integKeyCS]
if self.isClient: # Reverse for the client
outs, ins = ins, outs
self.nextEncryptions.setKeys(outs[0], outs[1], ins[0], ins[1], outs[2], ins[2])
self.sendPacket(MSG_NEWKEYS, b"")
def _newKeys(self):
"""
Called back by a subclass once a I{MSG_NEWKEYS} message has been
received. This indicates key exchange has completed and new encryption
and compression parameters should be adopted. Any messages which were
queued during key exchange will also be flushed.
"""
self._log.debug("NEW KEYS")
self.currentEncryptions = self.nextEncryptions
if self.outgoingCompressionType == b"zlib":
self.outgoingCompression = zlib.compressobj(6)
if self.incomingCompressionType == b"zlib":
self.incomingCompression = zlib.decompressobj()
self._keyExchangeState = self._KEY_EXCHANGE_NONE
messages = self._blockedByKeyExchange
self._blockedByKeyExchange = None
for (messageType, payload) in messages:
self.sendPacket(messageType, payload)
def isEncrypted(self, direction="out"):
"""
Check if the connection is encrypted in the given direction.
@type direction: L{str}
@param direction: The direction: one of 'out', 'in', or 'both'.
@rtype: L{bool}
@return: C{True} if it is encrypted.
"""
if direction == "out":
return self.currentEncryptions.outCipType != b"none"
elif direction == "in":
return self.currentEncryptions.inCipType != b"none"
elif direction == "both":
return self.isEncrypted("in") and self.isEncrypted("out")
else:
raise TypeError('direction must be "out", "in", or "both"')
def isVerified(self, direction="out"):
"""
Check if the connection is verified/authentication in the given direction.
@type direction: L{str}
@param direction: The direction: one of 'out', 'in', or 'both'.
@rtype: L{bool}
@return: C{True} if it is verified.
"""
if direction == "out":
return self.currentEncryptions.outMACType != b"none"
elif direction == "in":
return self.currentEncryptions.inMACType != b"none"
elif direction == "both":
return self.isVerified("in") and self.isVerified("out")
else:
raise TypeError('direction must be "out", "in", or "both"')
def loseConnection(self):
"""
Lose the connection to the other side, sending a
DISCONNECT_CONNECTION_LOST message.
"""
self.sendDisconnect(DISCONNECT_CONNECTION_LOST, b"user closed connection")
# Client methods
def receiveError(self, reasonCode, description):
"""
Called when we receive a disconnect error message from the other
side.
@param reasonCode: the reason for the disconnect, one of the
DISCONNECT_ values.
@type reasonCode: L{int}
@param description: a human-readable description of the
disconnection.
@type description: L{str}
"""
self._log.error(
"Got remote error, code {code}\nreason: {description}",
code=reasonCode,
description=description,
)
def receiveUnimplemented(self, seqnum):
"""
Called when we receive an unimplemented packet message from the other
side.
@param seqnum: the sequence number that was not understood.
@type seqnum: L{int}
"""
self._log.warn("other side unimplemented packet #{seqnum}", seqnum=seqnum)
def receiveDebug(self, alwaysDisplay, message, lang):
"""
Called when we receive a debug message from the other side.
@param alwaysDisplay: if True, this message should always be
displayed.
@type alwaysDisplay: L{bool}
@param message: the debug message
@type message: L{str}
@param lang: optionally the language the message is in.
@type lang: L{str}
"""
if alwaysDisplay:
self._log.debug("Remote Debug Message: {message}", message=message)
def _generateECPrivateKey(self):
"""
Generate an private key for ECDH key exchange.
@rtype: The appropriate private key type matching C{self.kexAlg}:
L{ec.EllipticCurvePrivateKey} for C{ecdh-sha2-nistp*}, or
L{x25519.X25519PrivateKey} for C{curve25519-sha256}.
@return: The generated private key.
"""
if self.kexAlg.startswith(b"ecdh-sha2-nistp"):
try:
curve = keys._curveTable[b"ecdsa" + self.kexAlg[4:]]
except KeyError:
raise UnsupportedAlgorithm("unused-key")
return ec.generate_private_key(curve, default_backend())
elif self.kexAlg in (b"curve25519-sha256", b"curve25519-sha256@libssh.org"):
return x25519.X25519PrivateKey.generate()
else:
raise UnsupportedAlgorithm(
"Cannot generate elliptic curve private key for {!r}".format(
self.kexAlg
)
)
def _encodeECPublicKey(self, ecPub):
"""
Encode an elliptic curve public key to bytes.
@type ecPub: The appropriate public key type matching
C{self.kexAlg}: L{ec.EllipticCurvePublicKey} for
C{ecdh-sha2-nistp*}, or L{x25519.X25519PublicKey} for
C{curve25519-sha256}.
@param ecPub: The public key to encode.
@rtype: L{bytes}
@return: The encoded public key.
"""
if self.kexAlg.startswith(b"ecdh-sha2-nistp"):
return ecPub.public_bytes(
serialization.Encoding.X962,
serialization.PublicFormat.UncompressedPoint,
)
elif self.kexAlg in (b"curve25519-sha256", b"curve25519-sha256@libssh.org"):
return ecPub.public_bytes(
serialization.Encoding.Raw, serialization.PublicFormat.Raw
)
else:
raise UnsupportedAlgorithm(
f"Cannot encode elliptic curve public key for {self.kexAlg!r}"
)
def _generateECSharedSecret(self, ecPriv, theirECPubBytes):
"""
Generate a shared secret for ECDH key exchange.
@type ecPriv: The appropriate private key type matching
C{self.kexAlg}: L{ec.EllipticCurvePrivateKey} for
C{ecdh-sha2-nistp*}, or L{x25519.X25519PrivateKey} for
C{curve25519-sha256}.
@param ecPriv: Our private key.
@rtype: L{bytes}
@return: The generated shared secret, as an SSH multiple-precision
integer.
"""
if self.kexAlg.startswith(b"ecdh-sha2-nistp"):
try:
curve = keys._curveTable[b"ecdsa" + self.kexAlg[4:]]
except KeyError:
raise UnsupportedAlgorithm("unused-key")
theirECPub = ec.EllipticCurvePublicKey.from_encoded_point(
curve, theirECPubBytes
)
sharedSecret = ecPriv.exchange(ec.ECDH(), theirECPub)
elif self.kexAlg in (b"curve25519-sha256", b"curve25519-sha256@libssh.org"):
theirECPub = x25519.X25519PublicKey.from_public_bytes(theirECPubBytes)
sharedSecret = ecPriv.exchange(theirECPub)
else:
raise UnsupportedAlgorithm(
"Cannot generate elliptic curve shared secret for {!r}".format(
self.kexAlg
)
)
return _mpFromBytes(sharedSecret)
class SSHServerTransport(SSHTransportBase):
"""
SSHServerTransport implements the server side of the SSH protocol.
@ivar isClient: since we are never the client, this is always False.
@ivar ignoreNextPacket: if True, ignore the next key exchange packet. This
is set when the client sends a guessed key exchange packet but with
an incorrect guess.
@ivar dhGexRequest: the KEX_DH_GEX_REQUEST(_OLD) that the client sent.
The key generation needs this to be stored.
@ivar g: the Diffie-Hellman group generator.
@ivar p: the Diffie-Hellman group prime.
"""
isClient = False
ignoreNextPacket = 0
def _getHostKeys(self, keyAlg):
"""
Get the public and private host keys corresponding to the given
public key signature algorithm.
The factory stores public and private host keys by their key format,
which is not quite the same as the key signature algorithm: for
example, an ssh-rsa key can sign using any of the ssh-rsa,
rsa-sha2-256, or rsa-sha2-512 algorithms.
@type keyAlg: L{bytes}
@param keyAlg: A public key signature algorithm name.
@rtype: 2-L{tuple} of L{keys.Key}
@return: The public and private host keys.
@raises KeyError: if the factory does not have both a public and a
private host key for this signature algorithm.
"""
if keyAlg in {b"rsa-sha2-256", b"rsa-sha2-512"}:
keyFormat = b"ssh-rsa"
else:
keyFormat = keyAlg
return self.factory.publicKeys[keyFormat], self.factory.privateKeys[keyFormat]
def ssh_KEXINIT(self, packet):
"""
Called when we receive a MSG_KEXINIT message. For a description
of the packet, see SSHTransportBase.ssh_KEXINIT(). Additionally,
this method checks if a guessed key exchange packet was sent. If
it was sent, and it guessed incorrectly, the next key exchange
packet MUST be ignored.
"""
retval = SSHTransportBase.ssh_KEXINIT(self, packet)
if not retval: # Disconnected
return
else:
kexAlgs, keyAlgs, rest = retval
if ord(rest[0:1]): # Flag first_kex_packet_follows?
if (
kexAlgs[0] != self.supportedKeyExchanges[0]
or keyAlgs[0] != self.supportedPublicKeys[0]
):
self.ignoreNextPacket = True # Guess was wrong
def _ssh_KEX_ECDH_INIT(self, packet):
"""
Called from L{ssh_KEX_DH_GEX_REQUEST_OLD} to handle
elliptic curve key exchanges.
Payload::
string client Elliptic Curve Diffie-Hellman public key
Just like L{_ssh_KEXDH_INIT} this message type is also not dispatched
directly. Extra check to determine if this is really KEX_ECDH_INIT
is required.
First we load the host's public/private keys.
Then we generate the ECDH public/private keypair for the given curve.
With that we generate the shared secret key.
Then we compute the hash to sign and send back to the client
Along with the server's public key and the ECDH public key.
@type packet: L{bytes}
@param packet: The message data.
@return: None.
"""
# Get the raw client public key.
pktPub, packet = getNS(packet)
# Get the host's public and private keys
pubHostKey, privHostKey = self._getHostKeys(self.keyAlg)
# Generate the private key
ecPriv = self._generateECPrivateKey()
# Get the public key
self.ecPub = ecPriv.public_key()
encPub = self._encodeECPublicKey(self.ecPub)
# Generate the shared secret
sharedSecret = self._generateECSharedSecret(ecPriv, pktPub)
# Finish update and digest
h = _kex.getHashProcessor(self.kexAlg)()
h.update(NS(self.otherVersionString))
h.update(NS(self.ourVersionString))
h.update(NS(self.otherKexInitPayload))
h.update(NS(self.ourKexInitPayload))
h.update(NS(pubHostKey.blob()))
h.update(NS(pktPub))
h.update(NS(encPub))
h.update(sharedSecret)
exchangeHash = h.digest()
self.sendPacket(
MSG_KEXDH_REPLY,
NS(pubHostKey.blob())
+ NS(encPub)
+ NS(privHostKey.sign(exchangeHash, signatureType=self.keyAlg)),
)
self._keySetup(sharedSecret, exchangeHash)
def _ssh_KEXDH_INIT(self, packet):
"""
Called to handle the beginning of a non-group key exchange.
Unlike other message types, this is not dispatched automatically. It
is called from C{ssh_KEX_DH_GEX_REQUEST_OLD} because an extra check is
required to determine if this is really a KEXDH_INIT message or if it
is a KEX_DH_GEX_REQUEST_OLD message.
The KEXDH_INIT payload::
integer e (the client's Diffie-Hellman public key)
We send the KEXDH_REPLY with our host key and signature.
@type packet: L{bytes}
@param packet: The message data.
"""
clientDHpublicKey, foo = getMP(packet)
pubHostKey, privHostKey = self._getHostKeys(self.keyAlg)
self.g, self.p = _kex.getDHGeneratorAndPrime(self.kexAlg)
self._startEphemeralDH()
sharedSecret = self._finishEphemeralDH(clientDHpublicKey)
h = _kex.getHashProcessor(self.kexAlg)()
h.update(NS(self.otherVersionString))
h.update(NS(self.ourVersionString))
h.update(NS(self.otherKexInitPayload))
h.update(NS(self.ourKexInitPayload))
h.update(NS(pubHostKey.blob()))
h.update(MP(clientDHpublicKey))
h.update(self.dhSecretKeyPublicMP)
h.update(sharedSecret)
exchangeHash = h.digest()
self.sendPacket(
MSG_KEXDH_REPLY,
NS(pubHostKey.blob())
+ self.dhSecretKeyPublicMP
+ NS(privHostKey.sign(exchangeHash, signatureType=self.keyAlg)),
)
self._keySetup(sharedSecret, exchangeHash)
def ssh_KEX_DH_GEX_REQUEST_OLD(self, packet):
"""
This represents different key exchange methods that share the same
integer value. If the message is determined to be a KEXDH_INIT,
L{_ssh_KEXDH_INIT} is called to handle it. If it is a KEX_ECDH_INIT,
L{_ssh_KEX_ECDH_INIT} is called.
Otherwise, for KEX_DH_GEX_REQUEST_OLD payload::
integer ideal (ideal size for the Diffie-Hellman prime)
We send the KEX_DH_GEX_GROUP message with the group that is
closest in size to ideal.
If we were told to ignore the next key exchange packet by ssh_KEXINIT,
drop it on the floor and return.
@type packet: L{bytes}
@param packet: The message data.
"""
if self.ignoreNextPacket:
self.ignoreNextPacket = 0
return
# KEXDH_INIT, KEX_ECDH_INIT, and KEX_DH_GEX_REQUEST_OLD
# have the same value, so use another cue
# to decide what kind of message the peer sent us.
if _kex.isFixedGroup(self.kexAlg):
return self._ssh_KEXDH_INIT(packet)
elif _kex.isEllipticCurve(self.kexAlg):
return self._ssh_KEX_ECDH_INIT(packet)
else:
self.dhGexRequest = packet
ideal = struct.unpack(">L", packet)[0]
self.g, self.p = self.factory.getDHPrime(ideal)
self._startEphemeralDH()
self.sendPacket(MSG_KEX_DH_GEX_GROUP, MP(self.p) + MP(self.g))
def ssh_KEX_DH_GEX_REQUEST(self, packet):
"""
Called when we receive a MSG_KEX_DH_GEX_REQUEST message. Payload::
integer minimum
integer ideal
integer maximum
The client is asking for a Diffie-Hellman group between minimum and
maximum size, and close to ideal if possible. We reply with a
MSG_KEX_DH_GEX_GROUP message.
If we were told to ignore the next key exchange packet by ssh_KEXINIT,
drop it on the floor and return.
@type packet: L{bytes}
@param packet: The message data.
"""
if self.ignoreNextPacket:
self.ignoreNextPacket = 0
return
self.dhGexRequest = packet
min, ideal, max = struct.unpack(">3L", packet)
self.g, self.p = self.factory.getDHPrime(ideal)
self._startEphemeralDH()
self.sendPacket(MSG_KEX_DH_GEX_GROUP, MP(self.p) + MP(self.g))
def ssh_KEX_DH_GEX_INIT(self, packet):
"""
Called when we get a MSG_KEX_DH_GEX_INIT message. Payload::
integer e (client DH public key)
We send the MSG_KEX_DH_GEX_REPLY message with our host key and
signature.
@type packet: L{bytes}
@param packet: The message data.
"""
clientDHpublicKey, foo = getMP(packet)
pubHostKey, privHostKey = self._getHostKeys(self.keyAlg)
# TODO: we should also look at the value they send to us and reject
# insecure values of f (if g==2 and f has a single '1' bit while the
# rest are '0's, then they must have used a small y also).
# TODO: This could be computed when self.p is set up
# or do as openssh does and scan f for a single '1' bit instead
sharedSecret = self._finishEphemeralDH(clientDHpublicKey)
h = _kex.getHashProcessor(self.kexAlg)()
h.update(NS(self.otherVersionString))
h.update(NS(self.ourVersionString))
h.update(NS(self.otherKexInitPayload))
h.update(NS(self.ourKexInitPayload))
h.update(NS(pubHostKey.blob()))
h.update(self.dhGexRequest)
h.update(MP(self.p))
h.update(MP(self.g))
h.update(MP(clientDHpublicKey))
h.update(self.dhSecretKeyPublicMP)
h.update(sharedSecret)
exchangeHash = h.digest()
self.sendPacket(
MSG_KEX_DH_GEX_REPLY,
NS(pubHostKey.blob())
+ self.dhSecretKeyPublicMP
+ NS(privHostKey.sign(exchangeHash, signatureType=self.keyAlg)),
)
self._keySetup(sharedSecret, exchangeHash)
def _keySetup(self, sharedSecret, exchangeHash):
"""
See SSHTransportBase._keySetup().
"""
firstKey = self.sessionID is None
SSHTransportBase._keySetup(self, sharedSecret, exchangeHash)
# RFC 8308 section 2.4 says that the server MAY send EXT_INFO at
# zero, one, or both of the following opportunities: the next packet
# following the server's first MSG_NEWKEYS, or immediately preceding
# the server's MSG_USERAUTH_SUCCESS. We have no need for the
# latter, so make sure we only send it in the former case.
if firstKey:
self.sendExtInfo(
[(b"server-sig-algs", b",".join(self.supportedPublicKeys))]
)
def ssh_NEWKEYS(self, packet):
"""
Called when we get a MSG_NEWKEYS message. No payload.
When we get this, the keys have been set on both sides, and we
start using them to encrypt and authenticate the connection.
@type packet: L{bytes}
@param packet: The message data.
"""
if packet != b"":
self.sendDisconnect(DISCONNECT_PROTOCOL_ERROR, b"NEWKEYS takes no data")
return
self._newKeys()
def ssh_SERVICE_REQUEST(self, packet):
"""
Called when we get a MSG_SERVICE_REQUEST message. Payload::
string serviceName
The client has requested a service. If we can start the service,
start it; otherwise, disconnect with
DISCONNECT_SERVICE_NOT_AVAILABLE.
@type packet: L{bytes}
@param packet: The message data.
"""
service, rest = getNS(packet)
cls = self.factory.getService(self, service)
if not cls:
self.sendDisconnect(
DISCONNECT_SERVICE_NOT_AVAILABLE, b"don't have service " + service
)
return
else:
self.sendPacket(MSG_SERVICE_ACCEPT, NS(service))
self.setService(cls())
class SSHClientTransport(SSHTransportBase):
"""
SSHClientTransport implements the client side of the SSH protocol.
@ivar isClient: since we are always the client, this is always True.
@ivar _gotNewKeys: if we receive a MSG_NEWKEYS message before we are
ready to transition to the new keys, this is set to True so we
can transition when the keys are ready locally.
@ivar x: our Diffie-Hellman private key.
@ivar e: our Diffie-Hellman public key.
@ivar g: the Diffie-Hellman group generator.
@ivar p: the Diffie-Hellman group prime
@ivar instance: the SSHService object we are requesting.
@ivar _dhMinimalGroupSize: Minimal acceptable group size advertised by the
client in MSG_KEX_DH_GEX_REQUEST.
@type _dhMinimalGroupSize: int
@ivar _dhMaximalGroupSize: Maximal acceptable group size advertised by the
client in MSG_KEX_DH_GEX_REQUEST.
@type _dhMaximalGroupSize: int
@ivar _dhPreferredGroupSize: Preferred group size advertised by the client
in MSG_KEX_DH_GEX_REQUEST.
@type _dhPreferredGroupSize: int
"""
isClient = True
# Recommended minimal and maximal values from RFC 4419, 3.
_dhMinimalGroupSize = 1024
_dhMaximalGroupSize = 8192
# FIXME: https://twistedmatrix.com/trac/ticket/8103
# This may need to be more dynamic; compare kexgex_client in
# OpenSSH.
_dhPreferredGroupSize = 2048
def connectionMade(self):
"""
Called when the connection is started with the server. Just sets
up a private instance variable.
"""
SSHTransportBase.connectionMade(self)
self._gotNewKeys = 0
def ssh_KEXINIT(self, packet):
"""
Called when we receive a MSG_KEXINIT message. For a description
of the packet, see SSHTransportBase.ssh_KEXINIT(). Additionally,
this method sends the first key exchange packet.
If the agreed-upon exchange is ECDH, generate a key pair for the
corresponding curve and send the public key.
If the agreed-upon exchange has a fixed prime/generator group,
generate a public key and send it in a MSG_KEXDH_INIT message.
Otherwise, ask for a 2048 bit group with a MSG_KEX_DH_GEX_REQUEST
message.
"""
if SSHTransportBase.ssh_KEXINIT(self, packet) is None:
# Connection was disconnected while doing base processing.
# Maybe no common protocols were agreed.
return
# Are we using ECDH?
if _kex.isEllipticCurve(self.kexAlg):
# Generate the keys
self.ecPriv = self._generateECPrivateKey()
self.ecPub = self.ecPriv.public_key()
# DH_GEX_REQUEST_OLD is the same number we need.
self.sendPacket(
MSG_KEX_DH_GEX_REQUEST_OLD, NS(self._encodeECPublicKey(self.ecPub))
)
elif _kex.isFixedGroup(self.kexAlg):
# We agreed on a fixed group key exchange algorithm.
self.g, self.p = _kex.getDHGeneratorAndPrime(self.kexAlg)
self._startEphemeralDH()
self.sendPacket(MSG_KEXDH_INIT, self.dhSecretKeyPublicMP)
else:
# We agreed on a dynamic group. Tell the server what range of
# group sizes we accept, and what size we prefer; the server
# will then select a group.
self.sendPacket(
MSG_KEX_DH_GEX_REQUEST,
struct.pack(
"!LLL",
self._dhMinimalGroupSize,
self._dhPreferredGroupSize,
self._dhMaximalGroupSize,
),
)
def _ssh_KEX_ECDH_REPLY(self, packet):
"""
Called to handle a reply to a ECDH exchange message(KEX_ECDH_INIT).
Like the handler for I{KEXDH_INIT}, this message type has an
overlapping value. This method is called from C{ssh_KEX_DH_GEX_GROUP}
if that method detects a non-group key exchange is in progress.
Payload::
string serverHostKey
string server Elliptic Curve Diffie-Hellman public key
string signature
We verify the host key and continue if it passes verificiation.
Otherwise raise an exception and return.
@type packet: L{bytes}
@param packet: The message data.
@return: A deferred firing when key exchange is complete.
"""
def _continue_KEX_ECDH_REPLY(ignored, hostKey, pubKey, signature):
# Save off the host public key.
theirECHost = hostKey
sharedSecret = self._generateECSharedSecret(self.ecPriv, pubKey)
h = _kex.getHashProcessor(self.kexAlg)()
h.update(NS(self.ourVersionString))
h.update(NS(self.otherVersionString))
h.update(NS(self.ourKexInitPayload))
h.update(NS(self.otherKexInitPayload))
h.update(NS(theirECHost))
h.update(NS(self._encodeECPublicKey(self.ecPub)))
h.update(NS(pubKey))
h.update(sharedSecret)
exchangeHash = h.digest()
if not keys.Key.fromString(theirECHost).verify(signature, exchangeHash):
self.sendDisconnect(DISCONNECT_KEY_EXCHANGE_FAILED, b"bad signature")
else:
self._keySetup(sharedSecret, exchangeHash)
# Get the host public key,
# the raw ECDH public key bytes and the signature
hostKey, pubKey, signature, packet = getNS(packet, 3)
# Easier to comment this out for now than to update all of the tests.
# fingerprint = nativeString(base64.b64encode(
# sha256(hostKey).digest()))
fingerprint = b":".join(
[binascii.hexlify(ch) for ch in iterbytes(md5(hostKey).digest())]
)
d = self.verifyHostKey(hostKey, fingerprint)
d.addCallback(_continue_KEX_ECDH_REPLY, hostKey, pubKey, signature)
d.addErrback(
lambda unused: self.sendDisconnect(
DISCONNECT_HOST_KEY_NOT_VERIFIABLE, b"bad host key"
)
)
return d
def _ssh_KEXDH_REPLY(self, packet):
"""
Called to handle a reply to a non-group key exchange message
(KEXDH_INIT).
Like the handler for I{KEXDH_INIT}, this message type has an
overlapping value. This method is called from C{ssh_KEX_DH_GEX_GROUP}
if that method detects a non-group key exchange is in progress.
Payload::
string serverHostKey
integer f (server Diffie-Hellman public key)
string signature
We verify the host key by calling verifyHostKey, then continue in
_continueKEXDH_REPLY.
@type packet: L{bytes}
@param packet: The message data.
@return: A deferred firing when key exchange is complete.
"""
pubKey, packet = getNS(packet)
f, packet = getMP(packet)
signature, packet = getNS(packet)
fingerprint = b":".join(
[binascii.hexlify(ch) for ch in iterbytes(md5(pubKey).digest())]
)
d = self.verifyHostKey(pubKey, fingerprint)
d.addCallback(self._continueKEXDH_REPLY, pubKey, f, signature)
d.addErrback(
lambda unused: self.sendDisconnect(
DISCONNECT_HOST_KEY_NOT_VERIFIABLE, b"bad host key"
)
)
return d
def ssh_KEX_DH_GEX_GROUP(self, packet):
"""
This handles different messages which share an integer value.
If the key exchange does not have a fixed prime/generator group,
we generate a Diffie-Hellman public key and send it in a
MSG_KEX_DH_GEX_INIT message.
Payload::
string g (group generator)
string p (group prime)
@type packet: L{bytes}
@param packet: The message data.
"""
if _kex.isFixedGroup(self.kexAlg):
return self._ssh_KEXDH_REPLY(packet)
elif _kex.isEllipticCurve(self.kexAlg):
return self._ssh_KEX_ECDH_REPLY(packet)
else:
self.p, rest = getMP(packet)
self.g, rest = getMP(rest)
self._startEphemeralDH()
self.sendPacket(MSG_KEX_DH_GEX_INIT, self.dhSecretKeyPublicMP)
def _continueKEXDH_REPLY(self, ignored, pubKey, f, signature):
"""
The host key has been verified, so we generate the keys.
@param ignored: Ignored.
@param pubKey: the public key blob for the server's public key.
@type pubKey: L{str}
@param f: the server's Diffie-Hellman public key.
@type f: L{int}
@param signature: the server's signature, verifying that it has the
correct private key.
@type signature: L{str}
"""
serverKey = keys.Key.fromString(pubKey)
sharedSecret = self._finishEphemeralDH(f)
h = _kex.getHashProcessor(self.kexAlg)()
h.update(NS(self.ourVersionString))
h.update(NS(self.otherVersionString))
h.update(NS(self.ourKexInitPayload))
h.update(NS(self.otherKexInitPayload))
h.update(NS(pubKey))
h.update(self.dhSecretKeyPublicMP)
h.update(MP(f))
h.update(sharedSecret)
exchangeHash = h.digest()
if not serverKey.verify(signature, exchangeHash):
self.sendDisconnect(DISCONNECT_KEY_EXCHANGE_FAILED, b"bad signature")
return
self._keySetup(sharedSecret, exchangeHash)
def ssh_KEX_DH_GEX_REPLY(self, packet):
"""
Called when we receive a MSG_KEX_DH_GEX_REPLY message. Payload::
string server host key
integer f (server DH public key)
We verify the host key by calling verifyHostKey, then continue in
_continueGEX_REPLY.
@type packet: L{bytes}
@param packet: The message data.
@return: A deferred firing once key exchange is complete.
"""
pubKey, packet = getNS(packet)
f, packet = getMP(packet)
signature, packet = getNS(packet)
fingerprint = b":".join(
[binascii.hexlify(c) for c in iterbytes(md5(pubKey).digest())]
)
d = self.verifyHostKey(pubKey, fingerprint)
d.addCallback(self._continueGEX_REPLY, pubKey, f, signature)
d.addErrback(
lambda unused: self.sendDisconnect(
DISCONNECT_HOST_KEY_NOT_VERIFIABLE, b"bad host key"
)
)
return d
def _continueGEX_REPLY(self, ignored, pubKey, f, signature):
"""
The host key has been verified, so we generate the keys.
@param ignored: Ignored.
@param pubKey: the public key blob for the server's public key.
@type pubKey: L{str}
@param f: the server's Diffie-Hellman public key.
@type f: L{int}
@param signature: the server's signature, verifying that it has the
correct private key.
@type signature: L{str}
"""
serverKey = keys.Key.fromString(pubKey)
sharedSecret = self._finishEphemeralDH(f)
h = _kex.getHashProcessor(self.kexAlg)()
h.update(NS(self.ourVersionString))
h.update(NS(self.otherVersionString))
h.update(NS(self.ourKexInitPayload))
h.update(NS(self.otherKexInitPayload))
h.update(NS(pubKey))
h.update(
struct.pack(
"!LLL",
self._dhMinimalGroupSize,
self._dhPreferredGroupSize,
self._dhMaximalGroupSize,
)
)
h.update(MP(self.p))
h.update(MP(self.g))
h.update(self.dhSecretKeyPublicMP)
h.update(MP(f))
h.update(sharedSecret)
exchangeHash = h.digest()
if not serverKey.verify(signature, exchangeHash):
self.sendDisconnect(DISCONNECT_KEY_EXCHANGE_FAILED, b"bad signature")
return
self._keySetup(sharedSecret, exchangeHash)
def _keySetup(self, sharedSecret, exchangeHash):
"""
See SSHTransportBase._keySetup().
"""
SSHTransportBase._keySetup(self, sharedSecret, exchangeHash)
if self._gotNewKeys:
self.ssh_NEWKEYS(b"")
def ssh_NEWKEYS(self, packet):
"""
Called when we receive a MSG_NEWKEYS message. No payload.
If we've finished setting up our own keys, start using them.
Otherwise, remember that we've received this message.
@type packet: L{bytes}
@param packet: The message data.
"""
if packet != b"":
self.sendDisconnect(DISCONNECT_PROTOCOL_ERROR, b"NEWKEYS takes no data")
return
if not self.nextEncryptions.encBlockSize:
self._gotNewKeys = 1
return
self._newKeys()
self.connectionSecure()
def ssh_SERVICE_ACCEPT(self, packet):
"""
Called when we receive a MSG_SERVICE_ACCEPT message. Payload::
string service name
Start the service we requested.
@type packet: L{bytes}
@param packet: The message data.
"""
if packet == b"":
self._log.info("got SERVICE_ACCEPT without payload")
else:
name = getNS(packet)[0]
if name != self.instance.name:
self.sendDisconnect(
DISCONNECT_PROTOCOL_ERROR,
b"received accept for service we did not request",
)
self.setService(self.instance)
def requestService(self, instance):
"""
Request that a service be run over this transport.
@type instance: subclass of L{twisted.conch.ssh.service.SSHService}
@param instance: The service to run.
"""
self.sendPacket(MSG_SERVICE_REQUEST, NS(instance.name))
self.instance = instance
# Client methods
def verifyHostKey(self, hostKey, fingerprint):
"""
Returns a Deferred that gets a callback if it is a valid key, or
an errback if not.
@type hostKey: L{bytes}
@param hostKey: The host key to verify.
@type fingerprint: L{bytes}
@param fingerprint: The fingerprint of the key.
@return: A deferred firing with C{True} if the key is valid.
"""
return defer.fail(NotImplementedError())
def connectionSecure(self):
"""
Called when the encryption has been set up. Generally,
requestService() is called to run another service over the transport.
"""
raise NotImplementedError()
class _NullEncryptionContext:
"""
An encryption context that does not actually encrypt anything.
"""
def update(self, data):
"""
'Encrypt' new data by doing nothing.
@type data: L{bytes}
@param data: The data to 'encrypt'.
@rtype: L{bytes}
@return: The 'encrypted' data.
"""
return data
class _DummyAlgorithm:
"""
An encryption algorithm that does not actually encrypt anything.
"""
block_size = 64
class _DummyCipher:
"""
A cipher for the none encryption method.
@ivar block_size: the block size of the encryption. In the case of the
none cipher, this is 8 bytes.
"""
algorithm = _DummyAlgorithm()
def encryptor(self):
"""
Construct a noop encryptor.
@return: The encryptor.
"""
return _NullEncryptionContext()
def decryptor(self):
"""
Construct a noop decryptor.
@return: The decryptor.
"""
return _NullEncryptionContext()
DH_GENERATOR, DH_PRIME = _kex.getDHGeneratorAndPrime(b"diffie-hellman-group14-sha1")
MSG_DISCONNECT = 1
MSG_IGNORE = 2
MSG_UNIMPLEMENTED = 3
MSG_DEBUG = 4
MSG_SERVICE_REQUEST = 5
MSG_SERVICE_ACCEPT = 6
MSG_EXT_INFO = 7
MSG_KEXINIT = 20
MSG_NEWKEYS = 21
MSG_KEXDH_INIT = 30
MSG_KEXDH_REPLY = 31
MSG_KEX_DH_GEX_REQUEST_OLD = 30
MSG_KEX_DH_GEX_REQUEST = 34
MSG_KEX_DH_GEX_GROUP = 31
MSG_KEX_DH_GEX_INIT = 32
MSG_KEX_DH_GEX_REPLY = 33
DISCONNECT_HOST_NOT_ALLOWED_TO_CONNECT = 1
DISCONNECT_PROTOCOL_ERROR = 2
DISCONNECT_KEY_EXCHANGE_FAILED = 3
DISCONNECT_RESERVED = 4
DISCONNECT_MAC_ERROR = 5
DISCONNECT_COMPRESSION_ERROR = 6
DISCONNECT_SERVICE_NOT_AVAILABLE = 7
DISCONNECT_PROTOCOL_VERSION_NOT_SUPPORTED = 8
DISCONNECT_HOST_KEY_NOT_VERIFIABLE = 9
DISCONNECT_CONNECTION_LOST = 10
DISCONNECT_BY_APPLICATION = 11
DISCONNECT_TOO_MANY_CONNECTIONS = 12
DISCONNECT_AUTH_CANCELLED_BY_USER = 13
DISCONNECT_NO_MORE_AUTH_METHODS_AVAILABLE = 14
DISCONNECT_ILLEGAL_USER_NAME = 15
messages = {}
for name, value in list(globals().items()):
# Avoid legacy messages which overlap with never ones
if name.startswith("MSG_") and not name.startswith("MSG_KEXDH_"):
messages[value] = name
# Check for regressions (#5352)
if "MSG_KEXDH_INIT" in messages or "MSG_KEXDH_REPLY" in messages:
raise RuntimeError("legacy SSH mnemonics should not end up in messages dict")
Zerion Mini Shell 1.0