Mini Shell
import difflib
from pathlib import Path
from typing import Dict, Iterable, Tuple
from parso import split_lines
from jedi.api.exceptions import RefactoringError
from jedi.inference.value.namespace import ImplicitNSName
EXPRESSION_PARTS = (
'or_test and_test not_test comparison '
'expr xor_expr and_expr shift_expr arith_expr term factor power atom_expr'
).split()
class ChangedFile:
def __init__(self, inference_state, from_path, to_path,
module_node, node_to_str_map):
self._inference_state = inference_state
self._from_path = from_path
self._to_path = to_path
self._module_node = module_node
self._node_to_str_map = node_to_str_map
def get_diff(self):
old_lines = split_lines(self._module_node.get_code(), keepends=True)
new_lines = split_lines(self.get_new_code(), keepends=True)
# Add a newline at the end if it's missing. Otherwise the diff will be
# very weird. A `diff -u file1 file2` would show the string:
#
# \ No newline at end of file
#
# This is not necessary IMO, because Jedi does not really play with
# newlines and the ending newline does not really matter in Python
# files. ~dave
if old_lines[-1] != '':
old_lines[-1] += '\n'
if new_lines[-1] != '':
new_lines[-1] += '\n'
project_path = self._inference_state.project.path
if self._from_path is None:
from_p = ''
else:
try:
from_p = self._from_path.relative_to(project_path)
except ValueError: # Happens it the path is not on th project_path
from_p = self._from_path
if self._to_path is None:
to_p = ''
else:
try:
to_p = self._to_path.relative_to(project_path)
except ValueError:
to_p = self._to_path
diff = difflib.unified_diff(
old_lines, new_lines,
fromfile=str(from_p),
tofile=str(to_p),
)
# Apparently there's a space at the end of the diff - for whatever
# reason.
return ''.join(diff).rstrip(' ')
def get_new_code(self):
return self._inference_state.grammar.refactor(self._module_node, self._node_to_str_map)
def apply(self):
if self._from_path is None:
raise RefactoringError(
'Cannot apply a refactoring on a Script with path=None'
)
with open(self._from_path, 'w', newline='') as f:
f.write(self.get_new_code())
def __repr__(self):
return '<%s: %s>' % (self.__class__.__name__, self._from_path)
class Refactoring:
def __init__(self, inference_state, file_to_node_changes, renames=()):
self._inference_state = inference_state
self._renames = renames
self._file_to_node_changes = file_to_node_changes
def get_changed_files(self) -> Dict[Path, ChangedFile]:
def calculate_to_path(p):
if p is None:
return p
p = str(p)
for from_, to in renames:
if p.startswith(str(from_)):
p = str(to) + p[len(str(from_)):]
return Path(p)
renames = self.get_renames()
return {
path: ChangedFile(
self._inference_state,
from_path=path,
to_path=calculate_to_path(path),
module_node=next(iter(map_)).get_root_node(),
node_to_str_map=map_
)
# We need to use `or`, because the path can be None
for path, map_ in sorted(
self._file_to_node_changes.items(),
key=lambda x: x[0] or Path("")
)
}
def get_renames(self) -> Iterable[Tuple[Path, Path]]:
"""
Files can be renamed in a refactoring.
"""
return sorted(self._renames)
def get_diff(self):
text = ''
project_path = self._inference_state.project.path
for from_, to in self.get_renames():
text += 'rename from %s\nrename to %s\n' \
% (_try_relative_to(from_, project_path), _try_relative_to(to, project_path))
return text + ''.join(f.get_diff() for f in self.get_changed_files().values())
def apply(self):
"""
Applies the whole refactoring to the files, which includes renames.
"""
for f in self.get_changed_files().values():
f.apply()
for old, new in self.get_renames():
old.rename(new)
def _calculate_rename(path, new_name):
dir_ = path.parent
if path.name in ('__init__.py', '__init__.pyi'):
return dir_, dir_.parent.joinpath(new_name)
return path, dir_.joinpath(new_name + path.suffix)
def rename(inference_state, definitions, new_name):
file_renames = set()
file_tree_name_map = {}
if not definitions:
raise RefactoringError("There is no name under the cursor")
for d in definitions:
# This private access is ok in a way. It's not public to
# protect Jedi users from seeing it.
tree_name = d._name.tree_name
if d.type == 'module' and tree_name is None and d.module_path is not None:
p = Path(d.module_path)
file_renames.add(_calculate_rename(p, new_name))
elif isinstance(d._name, ImplicitNSName):
for p in d._name._value.py__path__():
file_renames.add(_calculate_rename(Path(p), new_name))
else:
if tree_name is not None:
fmap = file_tree_name_map.setdefault(d.module_path, {})
fmap[tree_name] = tree_name.prefix + new_name
return Refactoring(inference_state, file_tree_name_map, file_renames)
def inline(inference_state, names):
if not names:
raise RefactoringError("There is no name under the cursor")
if any(n.api_type in ('module', 'namespace') for n in names):
raise RefactoringError("Cannot inline imports, modules or namespaces")
if any(n.tree_name is None for n in names):
raise RefactoringError("Cannot inline builtins/extensions")
definitions = [n for n in names if n.tree_name.is_definition()]
if len(definitions) == 0:
raise RefactoringError("No definition found to inline")
if len(definitions) > 1:
raise RefactoringError("Cannot inline a name with multiple definitions")
if len(names) == 1:
raise RefactoringError("There are no references to this name")
tree_name = definitions[0].tree_name
expr_stmt = tree_name.get_definition()
if expr_stmt.type != 'expr_stmt':
type_ = dict(
funcdef='function',
classdef='class',
).get(expr_stmt.type, expr_stmt.type)
raise RefactoringError("Cannot inline a %s" % type_)
if len(expr_stmt.get_defined_names(include_setitem=True)) > 1:
raise RefactoringError("Cannot inline a statement with multiple definitions")
first_child = expr_stmt.children[1]
if first_child.type == 'annassign' and len(first_child.children) == 4:
first_child = first_child.children[2]
if first_child != '=':
if first_child.type == 'annassign':
raise RefactoringError(
'Cannot inline a statement that is defined by an annotation'
)
else:
raise RefactoringError(
'Cannot inline a statement with "%s"'
% first_child.get_code(include_prefix=False)
)
rhs = expr_stmt.get_rhs()
replace_code = rhs.get_code(include_prefix=False)
references = [n for n in names if not n.tree_name.is_definition()]
file_to_node_changes = {}
for name in references:
tree_name = name.tree_name
path = name.get_root_context().py__file__()
s = replace_code
if rhs.type == 'testlist_star_expr' \
or tree_name.parent.type in EXPRESSION_PARTS \
or tree_name.parent.type == 'trailer' \
and tree_name.parent.get_next_sibling() is not None:
s = '(' + replace_code + ')'
of_path = file_to_node_changes.setdefault(path, {})
n = tree_name
prefix = n.prefix
par = n.parent
if par.type == 'trailer' and par.children[0] == '.':
prefix = par.parent.children[0].prefix
n = par
for some_node in par.parent.children[:par.parent.children.index(par)]:
of_path[some_node] = ''
of_path[n] = prefix + s
path = definitions[0].get_root_context().py__file__()
changes = file_to_node_changes.setdefault(path, {})
changes[expr_stmt] = _remove_indent_of_prefix(expr_stmt.get_first_leaf().prefix)
next_leaf = expr_stmt.get_next_leaf()
# Most of the time we have to remove the newline at the end of the
# statement, but if there's a comment we might not need to.
if next_leaf.prefix.strip(' \t') == '' \
and (next_leaf.type == 'newline' or next_leaf == ';'):
changes[next_leaf] = ''
return Refactoring(inference_state, file_to_node_changes)
def _remove_indent_of_prefix(prefix):
r"""
Removes the last indentation of a prefix, e.g. " \n \n " becomes " \n \n".
"""
return ''.join(split_lines(prefix, keepends=True)[:-1])
def _try_relative_to(path: Path, base: Path) -> Path:
try:
return path.relative_to(base)
except ValueError:
return path
Zerion Mini Shell 1.0