Mini Shell
import re
from textwrap import dedent
from inspect import Parameter
from parso.python.token import PythonTokenTypes
from parso.python import tree
from parso.tree import search_ancestor, Leaf
from parso import split_lines
from jedi import debug
from jedi import settings
from jedi.api import classes
from jedi.api import helpers
from jedi.api import keywords
from jedi.api.strings import complete_dict
from jedi.api.file_name import complete_file_name
from jedi.inference import imports
from jedi.inference.base_value import ValueSet
from jedi.inference.helpers import infer_call_of_leaf, parse_dotted_names
from jedi.inference.context import get_global_filters
from jedi.inference.value import TreeInstance
from jedi.inference.docstring_utils import DocstringModule
from jedi.inference.names import ParamNameWrapper, SubModuleName
from jedi.inference.gradual.conversion import convert_values, convert_names
from jedi.parser_utils import cut_value_at_position
from jedi.plugins import plugin_manager
class ParamNameWithEquals(ParamNameWrapper):
def get_public_name(self):
return self.string_name + '='
def _get_signature_param_names(signatures, positional_count, used_kwargs):
# Add named params
for call_sig in signatures:
for i, p in enumerate(call_sig.params):
kind = p.kind
if i < positional_count and kind == Parameter.POSITIONAL_OR_KEYWORD:
continue
if kind in (Parameter.POSITIONAL_OR_KEYWORD, Parameter.KEYWORD_ONLY) \
and p.name not in used_kwargs:
yield ParamNameWithEquals(p._name)
def _must_be_kwarg(signatures, positional_count, used_kwargs):
if used_kwargs:
return True
must_be_kwarg = True
for signature in signatures:
for i, p in enumerate(signature.params):
kind = p.kind
if kind is Parameter.VAR_POSITIONAL:
# In case there were not already kwargs, the next param can
# always be a normal argument.
return False
if i >= positional_count and kind in (Parameter.POSITIONAL_OR_KEYWORD,
Parameter.POSITIONAL_ONLY):
must_be_kwarg = False
break
if not must_be_kwarg:
break
return must_be_kwarg
def filter_names(inference_state, completion_names, stack, like_name, fuzzy, cached_name):
comp_dct = set()
if settings.case_insensitive_completion:
like_name = like_name.lower()
for name in completion_names:
string = name.string_name
if settings.case_insensitive_completion:
string = string.lower()
if helpers.match(string, like_name, fuzzy=fuzzy):
new = classes.Completion(
inference_state,
name,
stack,
len(like_name),
is_fuzzy=fuzzy,
cached_name=cached_name,
)
k = (new.name, new.complete) # key
if k not in comp_dct:
comp_dct.add(k)
tree_name = name.tree_name
if tree_name is not None:
definition = tree_name.get_definition()
if definition is not None and definition.type == 'del_stmt':
continue
yield new
def _remove_duplicates(completions, other_completions):
names = {d.name for d in other_completions}
return [c for c in completions if c.name not in names]
def get_user_context(module_context, position):
"""
Returns the scope in which the user resides. This includes flows.
"""
leaf = module_context.tree_node.get_leaf_for_position(position, include_prefixes=True)
return module_context.create_context(leaf)
def get_flow_scope_node(module_node, position):
node = module_node.get_leaf_for_position(position, include_prefixes=True)
while not isinstance(node, (tree.Scope, tree.Flow)):
node = node.parent
return node
@plugin_manager.decorate()
def complete_param_names(context, function_name, decorator_nodes):
# Basically there's no way to do param completion. The plugins are
# responsible for this.
return []
class Completion:
def __init__(self, inference_state, module_context, code_lines, position,
signatures_callback, fuzzy=False):
self._inference_state = inference_state
self._module_context = module_context
self._module_node = module_context.tree_node
self._code_lines = code_lines
# The first step of completions is to get the name
self._like_name = helpers.get_on_completion_name(self._module_node, code_lines, position)
# The actual cursor position is not what we need to calculate
# everything. We want the start of the name we're on.
self._original_position = position
self._signatures_callback = signatures_callback
self._fuzzy = fuzzy
def complete(self):
leaf = self._module_node.get_leaf_for_position(
self._original_position,
include_prefixes=True
)
string, start_leaf, quote = _extract_string_while_in_string(leaf, self._original_position)
prefixed_completions = complete_dict(
self._module_context,
self._code_lines,
start_leaf or leaf,
self._original_position,
None if string is None else quote + string,
fuzzy=self._fuzzy,
)
if string is not None and not prefixed_completions:
prefixed_completions = list(complete_file_name(
self._inference_state, self._module_context, start_leaf, quote, string,
self._like_name, self._signatures_callback,
self._code_lines, self._original_position,
self._fuzzy
))
if string is not None:
if not prefixed_completions and '\n' in string:
# Complete only multi line strings
prefixed_completions = self._complete_in_string(start_leaf, string)
return prefixed_completions
cached_name, completion_names = self._complete_python(leaf)
completions = list(filter_names(self._inference_state, completion_names,
self.stack, self._like_name,
self._fuzzy, cached_name=cached_name))
return (
# Removing duplicates mostly to remove False/True/None duplicates.
_remove_duplicates(prefixed_completions, completions)
+ sorted(completions, key=lambda x: (x.name.startswith('__'),
x.name.startswith('_'),
x.name.lower()))
)
def _complete_python(self, leaf):
"""
Analyzes the current context of a completion and decides what to
return.
Technically this works by generating a parser stack and analysing the
current stack for possible grammar nodes.
Possible enhancements:
- global/nonlocal search global
- yield from / raise from <- could be only exceptions/generators
- In args: */**: no completion
- In params (also lambda): no completion before =
"""
grammar = self._inference_state.grammar
self.stack = stack = None
self._position = (
self._original_position[0],
self._original_position[1] - len(self._like_name)
)
cached_name = None
try:
self.stack = stack = helpers.get_stack_at_position(
grammar, self._code_lines, leaf, self._position
)
except helpers.OnErrorLeaf as e:
value = e.error_leaf.value
if value == '.':
# After ErrorLeaf's that are dots, we will not do any
# completions since this probably just confuses the user.
return cached_name, []
# If we don't have a value, just use global completion.
return cached_name, self._complete_global_scope()
allowed_transitions = \
list(stack._allowed_transition_names_and_token_types())
if 'if' in allowed_transitions:
leaf = self._module_node.get_leaf_for_position(self._position, include_prefixes=True)
previous_leaf = leaf.get_previous_leaf()
indent = self._position[1]
if not (leaf.start_pos <= self._position <= leaf.end_pos):
indent = leaf.start_pos[1]
if previous_leaf is not None:
stmt = previous_leaf
while True:
stmt = search_ancestor(
stmt, 'if_stmt', 'for_stmt', 'while_stmt', 'try_stmt',
'error_node',
)
if stmt is None:
break
type_ = stmt.type
if type_ == 'error_node':
first = stmt.children[0]
if isinstance(first, Leaf):
type_ = first.value + '_stmt'
# Compare indents
if stmt.start_pos[1] == indent:
if type_ == 'if_stmt':
allowed_transitions += ['elif', 'else']
elif type_ == 'try_stmt':
allowed_transitions += ['except', 'finally', 'else']
elif type_ == 'for_stmt':
allowed_transitions.append('else')
completion_names = []
kwargs_only = False
if any(t in allowed_transitions for t in (PythonTokenTypes.NAME,
PythonTokenTypes.INDENT)):
# This means that we actually have to do type inference.
nonterminals = [stack_node.nonterminal for stack_node in stack]
nodes = _gather_nodes(stack)
if nodes and nodes[-1] in ('as', 'def', 'class'):
# No completions for ``with x as foo`` and ``import x as foo``.
# Also true for defining names as a class or function.
return cached_name, list(self._complete_inherited(is_function=True))
elif "import_stmt" in nonterminals:
level, names = parse_dotted_names(nodes, "import_from" in nonterminals)
only_modules = not ("import_from" in nonterminals and 'import' in nodes)
completion_names += self._get_importer_names(
names,
level,
only_modules=only_modules,
)
elif nonterminals[-1] in ('trailer', 'dotted_name') and nodes[-1] == '.':
dot = self._module_node.get_leaf_for_position(self._position)
if dot.type == "endmarker":
# This is a bit of a weird edge case, maybe we can somehow
# generalize this.
dot = leaf.get_previous_leaf()
cached_name, n = self._complete_trailer(dot.get_previous_leaf())
completion_names += n
elif self._is_parameter_completion():
completion_names += self._complete_params(leaf)
else:
# Apparently this looks like it's good enough to filter most cases
# so that signature completions don't randomly appear.
# To understand why this works, three things are important:
# 1. trailer with a `,` in it is either a subscript or an arglist.
# 2. If there's no `,`, it's at the start and only signatures start
# with `(`. Other trailers could start with `.` or `[`.
# 3. Decorators are very primitive and have an optional `(` with
# optional arglist in them.
if nodes[-1] in ['(', ','] \
and nonterminals[-1] in ('trailer', 'arglist', 'decorator'):
signatures = self._signatures_callback(*self._position)
if signatures:
call_details = signatures[0]._call_details
used_kwargs = list(call_details.iter_used_keyword_arguments())
positional_count = call_details.count_positional_arguments()
completion_names += _get_signature_param_names(
signatures,
positional_count,
used_kwargs,
)
kwargs_only = _must_be_kwarg(signatures, positional_count, used_kwargs)
if not kwargs_only:
completion_names += self._complete_global_scope()
completion_names += self._complete_inherited(is_function=False)
if not kwargs_only:
current_line = self._code_lines[self._position[0] - 1][:self._position[1]]
completion_names += self._complete_keywords(
allowed_transitions,
only_values=not (not current_line or current_line[-1] in ' \t.;'
and current_line[-3:] != '...')
)
return cached_name, completion_names
def _is_parameter_completion(self):
tos = self.stack[-1]
if tos.nonterminal == 'lambdef' and len(tos.nodes) == 1:
# We are at the position `lambda `, where basically the next node
# is a param.
return True
if tos.nonterminal in 'parameters':
# Basically we are at the position `foo(`, there's nothing there
# yet, so we have no `typedargslist`.
return True
# var args is for lambdas and typed args for normal functions
return tos.nonterminal in ('typedargslist', 'varargslist') and tos.nodes[-1] == ','
def _complete_params(self, leaf):
stack_node = self.stack[-2]
if stack_node.nonterminal == 'parameters':
stack_node = self.stack[-3]
if stack_node.nonterminal == 'funcdef':
context = get_user_context(self._module_context, self._position)
node = search_ancestor(leaf, 'error_node', 'funcdef')
if node is not None:
if node.type == 'error_node':
n = node.children[0]
if n.type == 'decorators':
decorators = n.children
elif n.type == 'decorator':
decorators = [n]
else:
decorators = []
else:
decorators = node.get_decorators()
function_name = stack_node.nodes[1]
return complete_param_names(context, function_name.value, decorators)
return []
def _complete_keywords(self, allowed_transitions, only_values):
for k in allowed_transitions:
if isinstance(k, str) and k.isalpha():
if not only_values or k in ('True', 'False', 'None'):
yield keywords.KeywordName(self._inference_state, k)
def _complete_global_scope(self):
context = get_user_context(self._module_context, self._position)
debug.dbg('global completion scope: %s', context)
flow_scope_node = get_flow_scope_node(self._module_node, self._position)
filters = get_global_filters(
context,
self._position,
flow_scope_node
)
completion_names = []
for filter in filters:
completion_names += filter.values()
return completion_names
def _complete_trailer(self, previous_leaf):
inferred_context = self._module_context.create_context(previous_leaf)
values = infer_call_of_leaf(inferred_context, previous_leaf)
debug.dbg('trailer completion values: %s', values, color='MAGENTA')
# The cached name simply exists to make speed optimizations for certain
# modules.
cached_name = None
if len(values) == 1:
v, = values
if v.is_module():
if len(v.string_names) == 1:
module_name = v.string_names[0]
if module_name in ('numpy', 'tensorflow', 'matplotlib', 'pandas'):
cached_name = module_name
return cached_name, self._complete_trailer_for_values(values)
def _complete_trailer_for_values(self, values):
user_context = get_user_context(self._module_context, self._position)
return complete_trailer(user_context, values)
def _get_importer_names(self, names, level=0, only_modules=True):
names = [n.value for n in names]
i = imports.Importer(self._inference_state, names, self._module_context, level)
return i.completion_names(self._inference_state, only_modules=only_modules)
def _complete_inherited(self, is_function=True):
"""
Autocomplete inherited methods when overriding in child class.
"""
leaf = self._module_node.get_leaf_for_position(self._position, include_prefixes=True)
cls = tree.search_ancestor(leaf, 'classdef')
if cls is None:
return
# Complete the methods that are defined in the super classes.
class_value = self._module_context.create_value(cls)
if cls.start_pos[1] >= leaf.start_pos[1]:
return
filters = class_value.get_filters(is_instance=True)
# The first dict is the dictionary of class itself.
next(filters)
for filter in filters:
for name in filter.values():
# TODO we should probably check here for properties
if (name.api_type == 'function') == is_function:
yield name
def _complete_in_string(self, start_leaf, string):
"""
To make it possible for people to have completions in doctests or
generally in "Python" code in docstrings, we use the following
heuristic:
- Having an indented block of code
- Having some doctest code that starts with `>>>`
- Having backticks that doesn't have whitespace inside it
"""
def iter_relevant_lines(lines):
include_next_line = False
for l in code_lines:
if include_next_line or l.startswith('>>>') or l.startswith(' '):
yield re.sub(r'^( *>>> ?| +)', '', l)
else:
yield None
include_next_line = bool(re.match(' *>>>', l))
string = dedent(string)
code_lines = split_lines(string, keepends=True)
relevant_code_lines = list(iter_relevant_lines(code_lines))
if relevant_code_lines[-1] is not None:
# Some code lines might be None, therefore get rid of that.
relevant_code_lines = ['\n' if c is None else c for c in relevant_code_lines]
return self._complete_code_lines(relevant_code_lines)
match = re.search(r'`([^`\s]+)', code_lines[-1])
if match:
return self._complete_code_lines([match.group(1)])
return []
def _complete_code_lines(self, code_lines):
module_node = self._inference_state.grammar.parse(''.join(code_lines))
module_value = DocstringModule(
in_module_context=self._module_context,
inference_state=self._inference_state,
module_node=module_node,
code_lines=code_lines,
)
return Completion(
self._inference_state,
module_value.as_context(),
code_lines=code_lines,
position=module_node.end_pos,
signatures_callback=lambda *args, **kwargs: [],
fuzzy=self._fuzzy
).complete()
def _gather_nodes(stack):
nodes = []
for stack_node in stack:
if stack_node.dfa.from_rule == 'small_stmt':
nodes = []
else:
nodes += stack_node.nodes
return nodes
_string_start = re.compile(r'^\w*(\'{3}|"{3}|\'|")')
def _extract_string_while_in_string(leaf, position):
def return_part_of_leaf(leaf):
kwargs = {}
if leaf.line == position[0]:
kwargs['endpos'] = position[1] - leaf.column
match = _string_start.match(leaf.value, **kwargs)
if not match:
return None, None, None
start = match.group(0)
if leaf.line == position[0] and position[1] < leaf.column + match.end():
return None, None, None
return cut_value_at_position(leaf, position)[match.end():], leaf, start
if position < leaf.start_pos:
return None, None, None
if leaf.type == 'string':
return return_part_of_leaf(leaf)
leaves = []
while leaf is not None:
if leaf.type == 'error_leaf' and ('"' in leaf.value or "'" in leaf.value):
if len(leaf.value) > 1:
return return_part_of_leaf(leaf)
prefix_leaf = None
if not leaf.prefix:
prefix_leaf = leaf.get_previous_leaf()
if prefix_leaf is None or prefix_leaf.type != 'name' \
or not all(c in 'rubf' for c in prefix_leaf.value.lower()):
prefix_leaf = None
return (
''.join(cut_value_at_position(l, position) for l in leaves),
prefix_leaf or leaf,
('' if prefix_leaf is None else prefix_leaf.value)
+ cut_value_at_position(leaf, position),
)
if leaf.line != position[0]:
# Multi line strings are always simple error leaves and contain the
# whole string, single line error leaves are atherefore important
# now and since the line is different, it's not really a single
# line string anymore.
break
leaves.insert(0, leaf)
leaf = leaf.get_previous_leaf()
return None, None, None
def complete_trailer(user_context, values):
completion_names = []
for value in values:
for filter in value.get_filters(origin_scope=user_context.tree_node):
completion_names += filter.values()
if not value.is_stub() and isinstance(value, TreeInstance):
completion_names += _complete_getattr(user_context, value)
python_values = convert_values(values)
for c in python_values:
if c not in values:
for filter in c.get_filters(origin_scope=user_context.tree_node):
completion_names += filter.values()
return completion_names
def _complete_getattr(user_context, instance):
"""
A heuristic to make completion for proxy objects work. This is not
intended to work in all cases. It works exactly in this case:
def __getattr__(self, name):
...
return getattr(any_object, name)
It is important that the return contains getattr directly, otherwise it
won't work anymore. It's really just a stupid heuristic. It will not
work if you write e.g. `return (getatr(o, name))`, because of the
additional parentheses. It will also not work if you move the getattr
to some other place that is not the return statement itself.
It is intentional that it doesn't work in all cases. Generally it's
really hard to do even this case (as you can see below). Most people
will write it like this anyway and the other ones, well they are just
out of luck I guess :) ~dave.
"""
names = (instance.get_function_slot_names('__getattr__')
or instance.get_function_slot_names('__getattribute__'))
functions = ValueSet.from_sets(
name.infer()
for name in names
)
for func in functions:
tree_node = func.tree_node
if tree_node is None or tree_node.type != 'funcdef':
continue
for return_stmt in tree_node.iter_return_stmts():
# Basically until the next comment we just try to find out if a
# return statement looks exactly like `return getattr(x, name)`.
if return_stmt.type != 'return_stmt':
continue
atom_expr = return_stmt.children[1]
if atom_expr.type != 'atom_expr':
continue
atom = atom_expr.children[0]
trailer = atom_expr.children[1]
if len(atom_expr.children) != 2 or atom.type != 'name' \
or atom.value != 'getattr':
continue
arglist = trailer.children[1]
if arglist.type != 'arglist' or len(arglist.children) < 3:
continue
context = func.as_context()
object_node = arglist.children[0]
# Make sure it's a param: foo in __getattr__(self, foo)
name_node = arglist.children[2]
name_list = context.goto(name_node, name_node.start_pos)
if not any(n.api_type == 'param' for n in name_list):
continue
# Now that we know that these are most probably completion
# objects, we just infer the object and return them as
# completions.
objects = context.infer_node(object_node)
return complete_trailer(user_context, objects)
return []
def search_in_module(inference_state, module_context, names, wanted_names,
wanted_type, complete=False, fuzzy=False,
ignore_imports=False, convert=False):
for s in wanted_names[:-1]:
new_names = []
for n in names:
if s == n.string_name:
if n.tree_name is not None and n.api_type in ('module', 'namespace') \
and ignore_imports:
continue
new_names += complete_trailer(
module_context,
n.infer()
)
debug.dbg('dot lookup on search %s from %s', new_names, names[:10])
names = new_names
last_name = wanted_names[-1].lower()
for n in names:
string = n.string_name.lower()
if complete and helpers.match(string, last_name, fuzzy=fuzzy) \
or not complete and string == last_name:
if isinstance(n, SubModuleName):
names = [v.name for v in n.infer()]
else:
names = [n]
if convert:
names = convert_names(names)
for n2 in names:
if complete:
def_ = classes.Completion(
inference_state, n2,
stack=None,
like_name_length=len(last_name),
is_fuzzy=fuzzy,
)
else:
def_ = classes.Name(inference_state, n2)
if not wanted_type or wanted_type == def_.type:
yield def_
Zerion Mini Shell 1.0