Mini Shell
# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
import abc
import typing
import warnings
from cryptography import utils
from cryptography.hazmat._oid import ObjectIdentifier
from cryptography.hazmat.primitives import _serialization, hashes
from cryptography.hazmat.primitives.asymmetric import (
AsymmetricSignatureContext,
AsymmetricVerificationContext,
utils as asym_utils,
)
class EllipticCurveOID(object):
SECP192R1 = ObjectIdentifier("1.2.840.10045.3.1.1")
SECP224R1 = ObjectIdentifier("1.3.132.0.33")
SECP256K1 = ObjectIdentifier("1.3.132.0.10")
SECP256R1 = ObjectIdentifier("1.2.840.10045.3.1.7")
SECP384R1 = ObjectIdentifier("1.3.132.0.34")
SECP521R1 = ObjectIdentifier("1.3.132.0.35")
BRAINPOOLP256R1 = ObjectIdentifier("1.3.36.3.3.2.8.1.1.7")
BRAINPOOLP384R1 = ObjectIdentifier("1.3.36.3.3.2.8.1.1.11")
BRAINPOOLP512R1 = ObjectIdentifier("1.3.36.3.3.2.8.1.1.13")
SECT163K1 = ObjectIdentifier("1.3.132.0.1")
SECT163R2 = ObjectIdentifier("1.3.132.0.15")
SECT233K1 = ObjectIdentifier("1.3.132.0.26")
SECT233R1 = ObjectIdentifier("1.3.132.0.27")
SECT283K1 = ObjectIdentifier("1.3.132.0.16")
SECT283R1 = ObjectIdentifier("1.3.132.0.17")
SECT409K1 = ObjectIdentifier("1.3.132.0.36")
SECT409R1 = ObjectIdentifier("1.3.132.0.37")
SECT571K1 = ObjectIdentifier("1.3.132.0.38")
SECT571R1 = ObjectIdentifier("1.3.132.0.39")
class EllipticCurve(metaclass=abc.ABCMeta):
@abc.abstractproperty
def name(self) -> str:
"""
The name of the curve. e.g. secp256r1.
"""
@abc.abstractproperty
def key_size(self) -> int:
"""
Bit size of a secret scalar for the curve.
"""
class EllipticCurveSignatureAlgorithm(metaclass=abc.ABCMeta):
@abc.abstractproperty
def algorithm(
self,
) -> typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm]:
"""
The digest algorithm used with this signature.
"""
class EllipticCurvePrivateKey(metaclass=abc.ABCMeta):
@abc.abstractmethod
def signer(
self,
signature_algorithm: EllipticCurveSignatureAlgorithm,
) -> AsymmetricSignatureContext:
"""
Returns an AsymmetricSignatureContext used for signing data.
"""
@abc.abstractmethod
def exchange(
self, algorithm: "ECDH", peer_public_key: "EllipticCurvePublicKey"
) -> bytes:
"""
Performs a key exchange operation using the provided algorithm with the
provided peer's public key.
"""
@abc.abstractmethod
def public_key(self) -> "EllipticCurvePublicKey":
"""
The EllipticCurvePublicKey for this private key.
"""
@abc.abstractproperty
def curve(self) -> EllipticCurve:
"""
The EllipticCurve that this key is on.
"""
@abc.abstractproperty
def key_size(self) -> int:
"""
Bit size of a secret scalar for the curve.
"""
@abc.abstractmethod
def sign(
self,
data: bytes,
signature_algorithm: EllipticCurveSignatureAlgorithm,
) -> bytes:
"""
Signs the data
"""
@abc.abstractmethod
def private_numbers(self) -> "EllipticCurvePrivateNumbers":
"""
Returns an EllipticCurvePrivateNumbers.
"""
@abc.abstractmethod
def private_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PrivateFormat,
encryption_algorithm: _serialization.KeySerializationEncryption,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
EllipticCurvePrivateKeyWithSerialization = EllipticCurvePrivateKey
class EllipticCurvePublicKey(metaclass=abc.ABCMeta):
@abc.abstractmethod
def verifier(
self,
signature: bytes,
signature_algorithm: EllipticCurveSignatureAlgorithm,
) -> AsymmetricVerificationContext:
"""
Returns an AsymmetricVerificationContext used for signing data.
"""
@abc.abstractproperty
def curve(self) -> EllipticCurve:
"""
The EllipticCurve that this key is on.
"""
@abc.abstractproperty
def key_size(self) -> int:
"""
Bit size of a secret scalar for the curve.
"""
@abc.abstractmethod
def public_numbers(self) -> "EllipticCurvePublicNumbers":
"""
Returns an EllipticCurvePublicNumbers.
"""
@abc.abstractmethod
def public_bytes(
self,
encoding: _serialization.Encoding,
format: _serialization.PublicFormat,
) -> bytes:
"""
Returns the key serialized as bytes.
"""
@abc.abstractmethod
def verify(
self,
signature: bytes,
data: bytes,
signature_algorithm: EllipticCurveSignatureAlgorithm,
) -> None:
"""
Verifies the signature of the data.
"""
@classmethod
def from_encoded_point(
cls, curve: EllipticCurve, data: bytes
) -> "EllipticCurvePublicKey":
utils._check_bytes("data", data)
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must be an EllipticCurve instance")
if len(data) == 0:
raise ValueError("data must not be an empty byte string")
if data[0] not in [0x02, 0x03, 0x04]:
raise ValueError("Unsupported elliptic curve point type")
from cryptography.hazmat.backends.openssl.backend import backend
return backend.load_elliptic_curve_public_bytes(curve, data)
EllipticCurvePublicKeyWithSerialization = EllipticCurvePublicKey
class SECT571R1(EllipticCurve):
name = "sect571r1"
key_size = 570
class SECT409R1(EllipticCurve):
name = "sect409r1"
key_size = 409
class SECT283R1(EllipticCurve):
name = "sect283r1"
key_size = 283
class SECT233R1(EllipticCurve):
name = "sect233r1"
key_size = 233
class SECT163R2(EllipticCurve):
name = "sect163r2"
key_size = 163
class SECT571K1(EllipticCurve):
name = "sect571k1"
key_size = 571
class SECT409K1(EllipticCurve):
name = "sect409k1"
key_size = 409
class SECT283K1(EllipticCurve):
name = "sect283k1"
key_size = 283
class SECT233K1(EllipticCurve):
name = "sect233k1"
key_size = 233
class SECT163K1(EllipticCurve):
name = "sect163k1"
key_size = 163
class SECP521R1(EllipticCurve):
name = "secp521r1"
key_size = 521
class SECP384R1(EllipticCurve):
name = "secp384r1"
key_size = 384
class SECP256R1(EllipticCurve):
name = "secp256r1"
key_size = 256
class SECP256K1(EllipticCurve):
name = "secp256k1"
key_size = 256
class SECP224R1(EllipticCurve):
name = "secp224r1"
key_size = 224
class SECP192R1(EllipticCurve):
name = "secp192r1"
key_size = 192
class BrainpoolP256R1(EllipticCurve):
name = "brainpoolP256r1"
key_size = 256
class BrainpoolP384R1(EllipticCurve):
name = "brainpoolP384r1"
key_size = 384
class BrainpoolP512R1(EllipticCurve):
name = "brainpoolP512r1"
key_size = 512
_CURVE_TYPES: typing.Dict[str, typing.Type[EllipticCurve]] = {
"prime192v1": SECP192R1,
"prime256v1": SECP256R1,
"secp192r1": SECP192R1,
"secp224r1": SECP224R1,
"secp256r1": SECP256R1,
"secp384r1": SECP384R1,
"secp521r1": SECP521R1,
"secp256k1": SECP256K1,
"sect163k1": SECT163K1,
"sect233k1": SECT233K1,
"sect283k1": SECT283K1,
"sect409k1": SECT409K1,
"sect571k1": SECT571K1,
"sect163r2": SECT163R2,
"sect233r1": SECT233R1,
"sect283r1": SECT283R1,
"sect409r1": SECT409R1,
"sect571r1": SECT571R1,
"brainpoolP256r1": BrainpoolP256R1,
"brainpoolP384r1": BrainpoolP384R1,
"brainpoolP512r1": BrainpoolP512R1,
}
class ECDSA(EllipticCurveSignatureAlgorithm):
def __init__(
self,
algorithm: typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm],
):
self._algorithm = algorithm
@property
def algorithm(
self,
) -> typing.Union[asym_utils.Prehashed, hashes.HashAlgorithm]:
return self._algorithm
def generate_private_key(
curve: EllipticCurve, backend: typing.Any = None
) -> EllipticCurvePrivateKey:
from cryptography.hazmat.backends.openssl.backend import backend as ossl
return ossl.generate_elliptic_curve_private_key(curve)
def derive_private_key(
private_value: int,
curve: EllipticCurve,
backend: typing.Any = None,
) -> EllipticCurvePrivateKey:
from cryptography.hazmat.backends.openssl.backend import backend as ossl
if not isinstance(private_value, int):
raise TypeError("private_value must be an integer type.")
if private_value <= 0:
raise ValueError("private_value must be a positive integer.")
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must provide the EllipticCurve interface.")
return ossl.derive_elliptic_curve_private_key(private_value, curve)
class EllipticCurvePublicNumbers(object):
def __init__(self, x: int, y: int, curve: EllipticCurve):
if not isinstance(x, int) or not isinstance(y, int):
raise TypeError("x and y must be integers.")
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must provide the EllipticCurve interface.")
self._y = y
self._x = x
self._curve = curve
def public_key(self, backend: typing.Any = None) -> EllipticCurvePublicKey:
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
return ossl.load_elliptic_curve_public_numbers(self)
def encode_point(self) -> bytes:
warnings.warn(
"encode_point has been deprecated on EllipticCurvePublicNumbers"
" and will be removed in a future version. Please use "
"EllipticCurvePublicKey.public_bytes to obtain both "
"compressed and uncompressed point encoding.",
utils.PersistentlyDeprecated2019,
stacklevel=2,
)
# key_size is in bits. Convert to bytes and round up
byte_length = (self.curve.key_size + 7) // 8
return (
b"\x04"
+ utils.int_to_bytes(self.x, byte_length)
+ utils.int_to_bytes(self.y, byte_length)
)
@classmethod
def from_encoded_point(
cls, curve: EllipticCurve, data: bytes
) -> "EllipticCurvePublicNumbers":
if not isinstance(curve, EllipticCurve):
raise TypeError("curve must be an EllipticCurve instance")
warnings.warn(
"Support for unsafe construction of public numbers from "
"encoded data will be removed in a future version. "
"Please use EllipticCurvePublicKey.from_encoded_point",
utils.PersistentlyDeprecated2019,
stacklevel=2,
)
if data.startswith(b"\x04"):
# key_size is in bits. Convert to bytes and round up
byte_length = (curve.key_size + 7) // 8
if len(data) == 2 * byte_length + 1:
x = int.from_bytes(data[1 : byte_length + 1], "big")
y = int.from_bytes(data[byte_length + 1 :], "big")
return cls(x, y, curve)
else:
raise ValueError("Invalid elliptic curve point data length")
else:
raise ValueError("Unsupported elliptic curve point type")
curve = property(lambda self: self._curve)
x = property(lambda self: self._x)
y = property(lambda self: self._y)
def __eq__(self, other):
if not isinstance(other, EllipticCurvePublicNumbers):
return NotImplemented
return (
self.x == other.x
and self.y == other.y
and self.curve.name == other.curve.name
and self.curve.key_size == other.curve.key_size
)
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((self.x, self.y, self.curve.name, self.curve.key_size))
def __repr__(self):
return (
"<EllipticCurvePublicNumbers(curve={0.curve.name}, x={0.x}, "
"y={0.y}>".format(self)
)
class EllipticCurvePrivateNumbers(object):
def __init__(
self, private_value: int, public_numbers: EllipticCurvePublicNumbers
):
if not isinstance(private_value, int):
raise TypeError("private_value must be an integer.")
if not isinstance(public_numbers, EllipticCurvePublicNumbers):
raise TypeError(
"public_numbers must be an EllipticCurvePublicNumbers "
"instance."
)
self._private_value = private_value
self._public_numbers = public_numbers
def private_key(
self, backend: typing.Any = None
) -> EllipticCurvePrivateKey:
from cryptography.hazmat.backends.openssl.backend import (
backend as ossl,
)
return ossl.load_elliptic_curve_private_numbers(self)
private_value = property(lambda self: self._private_value)
public_numbers = property(lambda self: self._public_numbers)
def __eq__(self, other):
if not isinstance(other, EllipticCurvePrivateNumbers):
return NotImplemented
return (
self.private_value == other.private_value
and self.public_numbers == other.public_numbers
)
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash((self.private_value, self.public_numbers))
class ECDH(object):
pass
_OID_TO_CURVE = {
EllipticCurveOID.SECP192R1: SECP192R1,
EllipticCurveOID.SECP224R1: SECP224R1,
EllipticCurveOID.SECP256K1: SECP256K1,
EllipticCurveOID.SECP256R1: SECP256R1,
EllipticCurveOID.SECP384R1: SECP384R1,
EllipticCurveOID.SECP521R1: SECP521R1,
EllipticCurveOID.BRAINPOOLP256R1: BrainpoolP256R1,
EllipticCurveOID.BRAINPOOLP384R1: BrainpoolP384R1,
EllipticCurveOID.BRAINPOOLP512R1: BrainpoolP512R1,
EllipticCurveOID.SECT163K1: SECT163K1,
EllipticCurveOID.SECT163R2: SECT163R2,
EllipticCurveOID.SECT233K1: SECT233K1,
EllipticCurveOID.SECT233R1: SECT233R1,
EllipticCurveOID.SECT283K1: SECT283K1,
EllipticCurveOID.SECT283R1: SECT283R1,
EllipticCurveOID.SECT409K1: SECT409K1,
EllipticCurveOID.SECT409R1: SECT409R1,
EllipticCurveOID.SECT571K1: SECT571K1,
EllipticCurveOID.SECT571R1: SECT571R1,
}
def get_curve_for_oid(oid: ObjectIdentifier) -> typing.Type[EllipticCurve]:
try:
return _OID_TO_CURVE[oid]
except KeyError:
raise LookupError(
"The provided object identifier has no matching elliptic "
"curve class"
)
Zerion Mini Shell 1.0