Mini Shell
import platform
import warnings
import fnmatch
import itertools
import pytest
import sys
import os
import operator
from fractions import Fraction
from functools import reduce
from collections import namedtuple
import numpy.core.umath as ncu
from numpy.core import _umath_tests as ncu_tests
import numpy as np
from numpy.testing import (
assert_, assert_equal, assert_raises, assert_raises_regex,
assert_array_equal, assert_almost_equal, assert_array_almost_equal,
assert_array_max_ulp, assert_allclose, assert_no_warnings, suppress_warnings,
_gen_alignment_data, assert_array_almost_equal_nulp, IS_WASM, IS_MUSL
)
from numpy.testing._private.utils import _glibc_older_than
UFUNCS = [obj for obj in np.core.umath.__dict__.values()
if isinstance(obj, np.ufunc)]
UFUNCS_UNARY = [
uf for uf in UFUNCS if uf.nin == 1
]
UFUNCS_UNARY_FP = [
uf for uf in UFUNCS_UNARY if 'f->f' in uf.types
]
UFUNCS_BINARY = [
uf for uf in UFUNCS if uf.nin == 2
]
UFUNCS_BINARY_ACC = [
uf for uf in UFUNCS_BINARY if hasattr(uf, "accumulate") and uf.nout == 1
]
def interesting_binop_operands(val1, val2, dtype):
"""
Helper to create "interesting" operands to cover common code paths:
* scalar inputs
* only first "values" is an array (e.g. scalar division fast-paths)
* Longer array (SIMD) placing the value of interest at different positions
* Oddly strided arrays which may not be SIMD compatible
It does not attempt to cover unaligned access or mixed dtypes.
These are normally handled by the casting/buffering machinery.
This is not a fixture (currently), since I believe a fixture normally
only yields once?
"""
fill_value = 1 # could be a parameter, but maybe not an optional one?
arr1 = np.full(10003, dtype=dtype, fill_value=fill_value)
arr2 = np.full(10003, dtype=dtype, fill_value=fill_value)
arr1[0] = val1
arr2[0] = val2
extractor = lambda res: res
yield arr1[0], arr2[0], extractor, "scalars"
extractor = lambda res: res
yield arr1[0, ...], arr2[0, ...], extractor, "scalar-arrays"
# reset array values to fill_value:
arr1[0] = fill_value
arr2[0] = fill_value
for pos in [0, 1, 2, 3, 4, 5, -1, -2, -3, -4]:
arr1[pos] = val1
arr2[pos] = val2
extractor = lambda res: res[pos]
yield arr1, arr2, extractor, f"off-{pos}"
yield arr1, arr2[pos], extractor, f"off-{pos}-with-scalar"
arr1[pos] = fill_value
arr2[pos] = fill_value
for stride in [-1, 113]:
op1 = arr1[::stride]
op2 = arr2[::stride]
op1[10] = val1
op2[10] = val2
extractor = lambda res: res[10]
yield op1, op2, extractor, f"stride-{stride}"
op1[10] = fill_value
op2[10] = fill_value
def on_powerpc():
""" True if we are running on a Power PC platform."""
return platform.processor() == 'powerpc' or \
platform.machine().startswith('ppc')
def bad_arcsinh():
"""The blocklisted trig functions are not accurate on aarch64/PPC for
complex256. Rather than dig through the actual problem skip the
test. This should be fixed when we can move past glibc2.17
which is the version in manylinux2014
"""
if platform.machine() == 'aarch64':
x = 1.78e-10
elif on_powerpc():
x = 2.16e-10
else:
return False
v1 = np.arcsinh(np.float128(x))
v2 = np.arcsinh(np.complex256(x)).real
# The eps for float128 is 1-e33, so this is way bigger
return abs((v1 / v2) - 1.0) > 1e-23
class _FilterInvalids:
def setup_method(self):
self.olderr = np.seterr(invalid='ignore')
def teardown_method(self):
np.seterr(**self.olderr)
class TestConstants:
def test_pi(self):
assert_allclose(ncu.pi, 3.141592653589793, 1e-15)
def test_e(self):
assert_allclose(ncu.e, 2.718281828459045, 1e-15)
def test_euler_gamma(self):
assert_allclose(ncu.euler_gamma, 0.5772156649015329, 1e-15)
class TestOut:
def test_out_subok(self):
for subok in (True, False):
a = np.array(0.5)
o = np.empty(())
r = np.add(a, 2, o, subok=subok)
assert_(r is o)
r = np.add(a, 2, out=o, subok=subok)
assert_(r is o)
r = np.add(a, 2, out=(o,), subok=subok)
assert_(r is o)
d = np.array(5.7)
o1 = np.empty(())
o2 = np.empty((), dtype=np.int32)
r1, r2 = np.frexp(d, o1, None, subok=subok)
assert_(r1 is o1)
r1, r2 = np.frexp(d, None, o2, subok=subok)
assert_(r2 is o2)
r1, r2 = np.frexp(d, o1, o2, subok=subok)
assert_(r1 is o1)
assert_(r2 is o2)
r1, r2 = np.frexp(d, out=(o1, None), subok=subok)
assert_(r1 is o1)
r1, r2 = np.frexp(d, out=(None, o2), subok=subok)
assert_(r2 is o2)
r1, r2 = np.frexp(d, out=(o1, o2), subok=subok)
assert_(r1 is o1)
assert_(r2 is o2)
with assert_raises(TypeError):
# Out argument must be tuple, since there are multiple outputs.
r1, r2 = np.frexp(d, out=o1, subok=subok)
assert_raises(TypeError, np.add, a, 2, o, o, subok=subok)
assert_raises(TypeError, np.add, a, 2, o, out=o, subok=subok)
assert_raises(TypeError, np.add, a, 2, None, out=o, subok=subok)
assert_raises(ValueError, np.add, a, 2, out=(o, o), subok=subok)
assert_raises(ValueError, np.add, a, 2, out=(), subok=subok)
assert_raises(TypeError, np.add, a, 2, [], subok=subok)
assert_raises(TypeError, np.add, a, 2, out=[], subok=subok)
assert_raises(TypeError, np.add, a, 2, out=([],), subok=subok)
o.flags.writeable = False
assert_raises(ValueError, np.add, a, 2, o, subok=subok)
assert_raises(ValueError, np.add, a, 2, out=o, subok=subok)
assert_raises(ValueError, np.add, a, 2, out=(o,), subok=subok)
def test_out_wrap_subok(self):
class ArrayWrap(np.ndarray):
__array_priority__ = 10
def __new__(cls, arr):
return np.asarray(arr).view(cls).copy()
def __array_wrap__(self, arr, context):
return arr.view(type(self))
for subok in (True, False):
a = ArrayWrap([0.5])
r = np.add(a, 2, subok=subok)
if subok:
assert_(isinstance(r, ArrayWrap))
else:
assert_(type(r) == np.ndarray)
r = np.add(a, 2, None, subok=subok)
if subok:
assert_(isinstance(r, ArrayWrap))
else:
assert_(type(r) == np.ndarray)
r = np.add(a, 2, out=None, subok=subok)
if subok:
assert_(isinstance(r, ArrayWrap))
else:
assert_(type(r) == np.ndarray)
r = np.add(a, 2, out=(None,), subok=subok)
if subok:
assert_(isinstance(r, ArrayWrap))
else:
assert_(type(r) == np.ndarray)
d = ArrayWrap([5.7])
o1 = np.empty((1,))
o2 = np.empty((1,), dtype=np.int32)
r1, r2 = np.frexp(d, o1, subok=subok)
if subok:
assert_(isinstance(r2, ArrayWrap))
else:
assert_(type(r2) == np.ndarray)
r1, r2 = np.frexp(d, o1, None, subok=subok)
if subok:
assert_(isinstance(r2, ArrayWrap))
else:
assert_(type(r2) == np.ndarray)
r1, r2 = np.frexp(d, None, o2, subok=subok)
if subok:
assert_(isinstance(r1, ArrayWrap))
else:
assert_(type(r1) == np.ndarray)
r1, r2 = np.frexp(d, out=(o1, None), subok=subok)
if subok:
assert_(isinstance(r2, ArrayWrap))
else:
assert_(type(r2) == np.ndarray)
r1, r2 = np.frexp(d, out=(None, o2), subok=subok)
if subok:
assert_(isinstance(r1, ArrayWrap))
else:
assert_(type(r1) == np.ndarray)
with assert_raises(TypeError):
# Out argument must be tuple, since there are multiple outputs.
r1, r2 = np.frexp(d, out=o1, subok=subok)
class TestComparisons:
import operator
@pytest.mark.parametrize('dtype', np.sctypes['uint'] + np.sctypes['int'] +
np.sctypes['float'] + [np.bool_])
@pytest.mark.parametrize('py_comp,np_comp', [
(operator.lt, np.less),
(operator.le, np.less_equal),
(operator.gt, np.greater),
(operator.ge, np.greater_equal),
(operator.eq, np.equal),
(operator.ne, np.not_equal)
])
def test_comparison_functions(self, dtype, py_comp, np_comp):
# Initialize input arrays
if dtype == np.bool_:
a = np.random.choice(a=[False, True], size=1000)
b = np.random.choice(a=[False, True], size=1000)
scalar = True
else:
a = np.random.randint(low=1, high=10, size=1000).astype(dtype)
b = np.random.randint(low=1, high=10, size=1000).astype(dtype)
scalar = 5
np_scalar = np.dtype(dtype).type(scalar)
a_lst = a.tolist()
b_lst = b.tolist()
# (Binary) Comparison (x1=array, x2=array)
comp_b = np_comp(a, b).view(np.uint8)
comp_b_list = [int(py_comp(x, y)) for x, y in zip(a_lst, b_lst)]
# (Scalar1) Comparison (x1=scalar, x2=array)
comp_s1 = np_comp(np_scalar, b).view(np.uint8)
comp_s1_list = [int(py_comp(scalar, x)) for x in b_lst]
# (Scalar2) Comparison (x1=array, x2=scalar)
comp_s2 = np_comp(a, np_scalar).view(np.uint8)
comp_s2_list = [int(py_comp(x, scalar)) for x in a_lst]
# Sequence: Binary, Scalar1 and Scalar2
assert_(comp_b.tolist() == comp_b_list,
f"Failed comparison ({py_comp.__name__})")
assert_(comp_s1.tolist() == comp_s1_list,
f"Failed comparison ({py_comp.__name__})")
assert_(comp_s2.tolist() == comp_s2_list,
f"Failed comparison ({py_comp.__name__})")
def test_ignore_object_identity_in_equal(self):
# Check comparing identical objects whose comparison
# is not a simple boolean, e.g., arrays that are compared elementwise.
a = np.array([np.array([1, 2, 3]), None], dtype=object)
assert_raises(ValueError, np.equal, a, a)
# Check error raised when comparing identical non-comparable objects.
class FunkyType:
def __eq__(self, other):
raise TypeError("I won't compare")
a = np.array([FunkyType()])
assert_raises(TypeError, np.equal, a, a)
# Check identity doesn't override comparison mismatch.
a = np.array([np.nan], dtype=object)
assert_equal(np.equal(a, a), [False])
def test_ignore_object_identity_in_not_equal(self):
# Check comparing identical objects whose comparison
# is not a simple boolean, e.g., arrays that are compared elementwise.
a = np.array([np.array([1, 2, 3]), None], dtype=object)
assert_raises(ValueError, np.not_equal, a, a)
# Check error raised when comparing identical non-comparable objects.
class FunkyType:
def __ne__(self, other):
raise TypeError("I won't compare")
a = np.array([FunkyType()])
assert_raises(TypeError, np.not_equal, a, a)
# Check identity doesn't override comparison mismatch.
a = np.array([np.nan], dtype=object)
assert_equal(np.not_equal(a, a), [True])
def test_error_in_equal_reduce(self):
# gh-20929
# make sure np.equal.reduce raises a TypeError if an array is passed
# without specifying the dtype
a = np.array([0, 0])
assert_equal(np.equal.reduce(a, dtype=bool), True)
assert_raises(TypeError, np.equal.reduce, a)
def test_object_dtype(self):
assert np.equal(1, [1], dtype=object).dtype == object
assert np.equal(1, [1], signature=(None, None, "O")).dtype == object
def test_object_nonbool_dtype_error(self):
# bool output dtype is fine of course:
assert np.equal(1, [1], dtype=bool).dtype == bool
# but the following are examples do not have a loop:
with pytest.raises(TypeError, match="No loop matching"):
np.equal(1, 1, dtype=np.int64)
with pytest.raises(TypeError, match="No loop matching"):
np.equal(1, 1, sig=(None, None, "l"))
@pytest.mark.parametrize("dtypes", ["qQ", "Qq"])
@pytest.mark.parametrize('py_comp, np_comp', [
(operator.lt, np.less),
(operator.le, np.less_equal),
(operator.gt, np.greater),
(operator.ge, np.greater_equal),
(operator.eq, np.equal),
(operator.ne, np.not_equal)
])
@pytest.mark.parametrize("vals", [(2**60, 2**60+1), (2**60+1, 2**60)])
def test_large_integer_direct_comparison(
self, dtypes, py_comp, np_comp, vals):
# Note that float(2**60) + 1 == float(2**60).
a1 = np.array([2**60], dtype=dtypes[0])
a2 = np.array([2**60 + 1], dtype=dtypes[1])
expected = py_comp(2**60, 2**60+1)
assert py_comp(a1, a2) == expected
assert np_comp(a1, a2) == expected
# Also check the scalars:
s1 = a1[0]
s2 = a2[0]
assert isinstance(s1, np.integer)
assert isinstance(s2, np.integer)
# The Python operator here is mainly interesting:
assert py_comp(s1, s2) == expected
assert np_comp(s1, s2) == expected
@pytest.mark.parametrize("dtype", np.typecodes['UnsignedInteger'])
@pytest.mark.parametrize('py_comp_func, np_comp_func', [
(operator.lt, np.less),
(operator.le, np.less_equal),
(operator.gt, np.greater),
(operator.ge, np.greater_equal),
(operator.eq, np.equal),
(operator.ne, np.not_equal)
])
@pytest.mark.parametrize("flip", [True, False])
def test_unsigned_signed_direct_comparison(
self, dtype, py_comp_func, np_comp_func, flip):
if flip:
py_comp = lambda x, y: py_comp_func(y, x)
np_comp = lambda x, y: np_comp_func(y, x)
else:
py_comp = py_comp_func
np_comp = np_comp_func
arr = np.array([np.iinfo(dtype).max], dtype=dtype)
expected = py_comp(int(arr[0]), -1)
assert py_comp(arr, -1) == expected
assert np_comp(arr, -1) == expected
scalar = arr[0]
assert isinstance(scalar, np.integer)
# The Python operator here is mainly interesting:
assert py_comp(scalar, -1) == expected
assert np_comp(scalar, -1) == expected
class TestAdd:
def test_reduce_alignment(self):
# gh-9876
# make sure arrays with weird strides work with the optimizations in
# pairwise_sum_@TYPE@. On x86, the 'b' field will count as aligned at a
# 4 byte offset, even though its itemsize is 8.
a = np.zeros(2, dtype=[('a', np.int32), ('b', np.float64)])
a['a'] = -1
assert_equal(a['b'].sum(), 0)
class TestDivision:
def test_division_int(self):
# int division should follow Python
x = np.array([5, 10, 90, 100, -5, -10, -90, -100, -120])
if 5 / 10 == 0.5:
assert_equal(x / 100, [0.05, 0.1, 0.9, 1,
-0.05, -0.1, -0.9, -1, -1.2])
else:
assert_equal(x / 100, [0, 0, 0, 1, -1, -1, -1, -1, -2])
assert_equal(x // 100, [0, 0, 0, 1, -1, -1, -1, -1, -2])
assert_equal(x % 100, [5, 10, 90, 0, 95, 90, 10, 0, 80])
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
@pytest.mark.parametrize("dtype,ex_val", itertools.product(
np.sctypes['int'] + np.sctypes['uint'], (
(
# dividend
"np.array(range(fo.max-lsize, fo.max)).astype(dtype),"
# divisors
"np.arange(lsize).astype(dtype),"
# scalar divisors
"range(15)"
),
(
# dividend
"np.arange(fo.min, fo.min+lsize).astype(dtype),"
# divisors
"np.arange(lsize//-2, lsize//2).astype(dtype),"
# scalar divisors
"range(fo.min, fo.min + 15)"
), (
# dividend
"np.array(range(fo.max-lsize, fo.max)).astype(dtype),"
# divisors
"np.arange(lsize).astype(dtype),"
# scalar divisors
"[1,3,9,13,neg, fo.min+1, fo.min//2, fo.max//3, fo.max//4]"
)
)
))
def test_division_int_boundary(self, dtype, ex_val):
fo = np.iinfo(dtype)
neg = -1 if fo.min < 0 else 1
# Large enough to test SIMD loops and remainder elements
lsize = 512 + 7
a, b, divisors = eval(ex_val)
a_lst, b_lst = a.tolist(), b.tolist()
c_div = lambda n, d: (
0 if d == 0 else (
fo.min if (n and n == fo.min and d == -1) else n//d
)
)
with np.errstate(divide='ignore'):
ac = a.copy()
ac //= b
div_ab = a // b
div_lst = [c_div(x, y) for x, y in zip(a_lst, b_lst)]
msg = "Integer arrays floor division check (//)"
assert all(div_ab == div_lst), msg
msg_eq = "Integer arrays floor division check (//=)"
assert all(ac == div_lst), msg_eq
for divisor in divisors:
ac = a.copy()
with np.errstate(divide='ignore', over='ignore'):
div_a = a // divisor
ac //= divisor
div_lst = [c_div(i, divisor) for i in a_lst]
assert all(div_a == div_lst), msg
assert all(ac == div_lst), msg_eq
with np.errstate(divide='raise', over='raise'):
if 0 in b:
# Verify overflow case
with pytest.raises(FloatingPointError,
match="divide by zero encountered in floor_divide"):
a // b
else:
a // b
if fo.min and fo.min in a:
with pytest.raises(FloatingPointError,
match='overflow encountered in floor_divide'):
a // -1
elif fo.min:
a // -1
with pytest.raises(FloatingPointError,
match="divide by zero encountered in floor_divide"):
a // 0
with pytest.raises(FloatingPointError,
match="divide by zero encountered in floor_divide"):
ac = a.copy()
ac //= 0
np.array([], dtype=dtype) // 0
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
@pytest.mark.parametrize("dtype,ex_val", itertools.product(
np.sctypes['int'] + np.sctypes['uint'], (
"np.array([fo.max, 1, 2, 1, 1, 2, 3], dtype=dtype)",
"np.array([fo.min, 1, -2, 1, 1, 2, -3]).astype(dtype)",
"np.arange(fo.min, fo.min+(100*10), 10, dtype=dtype)",
"np.array(range(fo.max-(100*7), fo.max, 7)).astype(dtype)",
)
))
def test_division_int_reduce(self, dtype, ex_val):
fo = np.iinfo(dtype)
a = eval(ex_val)
lst = a.tolist()
c_div = lambda n, d: (
0 if d == 0 or (n and n == fo.min and d == -1) else n//d
)
with np.errstate(divide='ignore'):
div_a = np.floor_divide.reduce(a)
div_lst = reduce(c_div, lst)
msg = "Reduce floor integer division check"
assert div_a == div_lst, msg
with np.errstate(divide='raise', over='raise'):
with pytest.raises(FloatingPointError,
match="divide by zero encountered in reduce"):
np.floor_divide.reduce(np.arange(-100, 100).astype(dtype))
if fo.min:
with pytest.raises(FloatingPointError,
match='overflow encountered in reduce'):
np.floor_divide.reduce(
np.array([fo.min, 1, -1], dtype=dtype)
)
@pytest.mark.parametrize(
"dividend,divisor,quotient",
[(np.timedelta64(2,'Y'), np.timedelta64(2,'M'), 12),
(np.timedelta64(2,'Y'), np.timedelta64(-2,'M'), -12),
(np.timedelta64(-2,'Y'), np.timedelta64(2,'M'), -12),
(np.timedelta64(-2,'Y'), np.timedelta64(-2,'M'), 12),
(np.timedelta64(2,'M'), np.timedelta64(-2,'Y'), -1),
(np.timedelta64(2,'Y'), np.timedelta64(0,'M'), 0),
(np.timedelta64(2,'Y'), 2, np.timedelta64(1,'Y')),
(np.timedelta64(2,'Y'), -2, np.timedelta64(-1,'Y')),
(np.timedelta64(-2,'Y'), 2, np.timedelta64(-1,'Y')),
(np.timedelta64(-2,'Y'), -2, np.timedelta64(1,'Y')),
(np.timedelta64(-2,'Y'), -2, np.timedelta64(1,'Y')),
(np.timedelta64(-2,'Y'), -3, np.timedelta64(0,'Y')),
(np.timedelta64(-2,'Y'), 0, np.timedelta64('Nat','Y')),
])
def test_division_int_timedelta(self, dividend, divisor, quotient):
# If either divisor is 0 or quotient is Nat, check for division by 0
if divisor and (isinstance(quotient, int) or not np.isnat(quotient)):
msg = "Timedelta floor division check"
assert dividend // divisor == quotient, msg
# Test for arrays as well
msg = "Timedelta arrays floor division check"
dividend_array = np.array([dividend]*5)
quotient_array = np.array([quotient]*5)
assert all(dividend_array // divisor == quotient_array), msg
else:
if IS_WASM:
pytest.skip("fp errors don't work in wasm")
with np.errstate(divide='raise', invalid='raise'):
with pytest.raises(FloatingPointError):
dividend // divisor
def test_division_complex(self):
# check that implementation is correct
msg = "Complex division implementation check"
x = np.array([1. + 1.*1j, 1. + .5*1j, 1. + 2.*1j], dtype=np.complex128)
assert_almost_equal(x**2/x, x, err_msg=msg)
# check overflow, underflow
msg = "Complex division overflow/underflow check"
x = np.array([1.e+110, 1.e-110], dtype=np.complex128)
y = x**2/x
assert_almost_equal(y/x, [1, 1], err_msg=msg)
def test_zero_division_complex(self):
with np.errstate(invalid="ignore", divide="ignore"):
x = np.array([0.0], dtype=np.complex128)
y = 1.0/x
assert_(np.isinf(y)[0])
y = complex(np.inf, np.nan)/x
assert_(np.isinf(y)[0])
y = complex(np.nan, np.inf)/x
assert_(np.isinf(y)[0])
y = complex(np.inf, np.inf)/x
assert_(np.isinf(y)[0])
y = 0.0/x
assert_(np.isnan(y)[0])
def test_floor_division_complex(self):
# check that floor division, divmod and remainder raises type errors
x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128)
with pytest.raises(TypeError):
x // 7
with pytest.raises(TypeError):
np.divmod(x, 7)
with pytest.raises(TypeError):
np.remainder(x, 7)
def test_floor_division_signed_zero(self):
# Check that the sign bit is correctly set when dividing positive and
# negative zero by one.
x = np.zeros(10)
assert_equal(np.signbit(x//1), 0)
assert_equal(np.signbit((-x)//1), 1)
@pytest.mark.skipif(hasattr(np.__config__, "blas_ssl2_info"),
reason="gh-22982")
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
@pytest.mark.parametrize('dtype', np.typecodes['Float'])
def test_floor_division_errors(self, dtype):
fnan = np.array(np.nan, dtype=dtype)
fone = np.array(1.0, dtype=dtype)
fzer = np.array(0.0, dtype=dtype)
finf = np.array(np.inf, dtype=dtype)
# divide by zero error check
with np.errstate(divide='raise', invalid='ignore'):
assert_raises(FloatingPointError, np.floor_divide, fone, fzer)
with np.errstate(divide='ignore', invalid='raise'):
np.floor_divide(fone, fzer)
# The following already contain a NaN and should not warn
with np.errstate(all='raise'):
np.floor_divide(fnan, fone)
np.floor_divide(fone, fnan)
np.floor_divide(fnan, fzer)
np.floor_divide(fzer, fnan)
@pytest.mark.parametrize('dtype', np.typecodes['Float'])
def test_floor_division_corner_cases(self, dtype):
# test corner cases like 1.0//0.0 for errors and return vals
x = np.zeros(10, dtype=dtype)
y = np.ones(10, dtype=dtype)
fnan = np.array(np.nan, dtype=dtype)
fone = np.array(1.0, dtype=dtype)
fzer = np.array(0.0, dtype=dtype)
finf = np.array(np.inf, dtype=dtype)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "invalid value encountered in floor_divide")
div = np.floor_divide(fnan, fone)
assert(np.isnan(div)), "dt: %s, div: %s" % (dt, div)
div = np.floor_divide(fone, fnan)
assert(np.isnan(div)), "dt: %s, div: %s" % (dt, div)
div = np.floor_divide(fnan, fzer)
assert(np.isnan(div)), "dt: %s, div: %s" % (dt, div)
# verify 1.0//0.0 computations return inf
with np.errstate(divide='ignore'):
z = np.floor_divide(y, x)
assert_(np.isinf(z).all())
def floor_divide_and_remainder(x, y):
return (np.floor_divide(x, y), np.remainder(x, y))
def _signs(dt):
if dt in np.typecodes['UnsignedInteger']:
return (+1,)
else:
return (+1, -1)
class TestRemainder:
def test_remainder_basic(self):
dt = np.typecodes['AllInteger'] + np.typecodes['Float']
for op in [floor_divide_and_remainder, np.divmod]:
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product(_signs(dt1), _signs(dt2)):
fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (op.__name__, dt1, dt2, sg1, sg2)
a = np.array(sg1*71, dtype=dt1)
b = np.array(sg2*19, dtype=dt2)
div, rem = op(a, b)
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def test_float_remainder_exact(self):
# test that float results are exact for small integers. This also
# holds for the same integers scaled by powers of two.
nlst = list(range(-127, 0))
plst = list(range(1, 128))
dividend = nlst + [0] + plst
divisor = nlst + plst
arg = list(itertools.product(dividend, divisor))
tgt = list(divmod(*t) for t in arg)
a, b = np.array(arg, dtype=int).T
# convert exact integer results from Python to float so that
# signed zero can be used, it is checked.
tgtdiv, tgtrem = np.array(tgt, dtype=float).T
tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)
for op in [floor_divide_and_remainder, np.divmod]:
for dt in np.typecodes['Float']:
msg = 'op: %s, dtype: %s' % (op.__name__, dt)
fa = a.astype(dt)
fb = b.astype(dt)
div, rem = op(fa, fb)
assert_equal(div, tgtdiv, err_msg=msg)
assert_equal(rem, tgtrem, err_msg=msg)
def test_float_remainder_roundoff(self):
# gh-6127
dt = np.typecodes['Float']
for op in [floor_divide_and_remainder, np.divmod]:
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (op.__name__, dt1, dt2, sg1, sg2)
a = np.array(sg1*78*6e-8, dtype=dt1)
b = np.array(sg2*6e-8, dtype=dt2)
div, rem = op(a, b)
# Equal assertion should hold when fmod is used
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
@pytest.mark.xfail(sys.platform.startswith("darwin"),
reason="MacOS seems to not give the correct 'invalid' warning for "
"`fmod`. Hopefully, others always do.")
@pytest.mark.parametrize('dtype', np.typecodes['Float'])
def test_float_divmod_errors(self, dtype):
# Check valid errors raised for divmod and remainder
fzero = np.array(0.0, dtype=dtype)
fone = np.array(1.0, dtype=dtype)
finf = np.array(np.inf, dtype=dtype)
fnan = np.array(np.nan, dtype=dtype)
# since divmod is combination of both remainder and divide
# ops it will set both dividebyzero and invalid flags
with np.errstate(divide='raise', invalid='ignore'):
assert_raises(FloatingPointError, np.divmod, fone, fzero)
with np.errstate(divide='ignore', invalid='raise'):
assert_raises(FloatingPointError, np.divmod, fone, fzero)
with np.errstate(invalid='raise'):
assert_raises(FloatingPointError, np.divmod, fzero, fzero)
with np.errstate(invalid='raise'):
assert_raises(FloatingPointError, np.divmod, finf, finf)
with np.errstate(divide='ignore', invalid='raise'):
assert_raises(FloatingPointError, np.divmod, finf, fzero)
with np.errstate(divide='raise', invalid='ignore'):
# inf / 0 does not set any flags, only the modulo creates a NaN
np.divmod(finf, fzero)
@pytest.mark.skipif(hasattr(np.__config__, "blas_ssl2_info"),
reason="gh-22982")
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
@pytest.mark.xfail(sys.platform.startswith("darwin"),
reason="MacOS seems to not give the correct 'invalid' warning for "
"`fmod`. Hopefully, others always do.")
@pytest.mark.parametrize('dtype', np.typecodes['Float'])
@pytest.mark.parametrize('fn', [np.fmod, np.remainder])
def test_float_remainder_errors(self, dtype, fn):
fzero = np.array(0.0, dtype=dtype)
fone = np.array(1.0, dtype=dtype)
finf = np.array(np.inf, dtype=dtype)
fnan = np.array(np.nan, dtype=dtype)
# The following already contain a NaN and should not warn.
with np.errstate(all='raise'):
with pytest.raises(FloatingPointError,
match="invalid value"):
fn(fone, fzero)
fn(fnan, fzero)
fn(fzero, fnan)
fn(fone, fnan)
fn(fnan, fone)
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
def test_float_remainder_overflow(self):
a = np.finfo(np.float64).tiny
with np.errstate(over='ignore', invalid='ignore'):
div, mod = np.divmod(4, a)
np.isinf(div)
assert_(mod == 0)
with np.errstate(over='raise', invalid='ignore'):
assert_raises(FloatingPointError, np.divmod, 4, a)
with np.errstate(invalid='raise', over='ignore'):
assert_raises(FloatingPointError, np.divmod, 4, a)
def test_float_divmod_corner_cases(self):
# check nan cases
for dt in np.typecodes['Float']:
fnan = np.array(np.nan, dtype=dt)
fone = np.array(1.0, dtype=dt)
fzer = np.array(0.0, dtype=dt)
finf = np.array(np.inf, dtype=dt)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "invalid value encountered in divmod")
sup.filter(RuntimeWarning, "divide by zero encountered in divmod")
div, rem = np.divmod(fone, fzer)
assert(np.isinf(div)), 'dt: %s, div: %s' % (dt, rem)
assert(np.isnan(rem)), 'dt: %s, rem: %s' % (dt, rem)
div, rem = np.divmod(fzer, fzer)
assert(np.isnan(rem)), 'dt: %s, rem: %s' % (dt, rem)
assert_(np.isnan(div)), 'dt: %s, rem: %s' % (dt, rem)
div, rem = np.divmod(finf, finf)
assert(np.isnan(div)), 'dt: %s, rem: %s' % (dt, rem)
assert(np.isnan(rem)), 'dt: %s, rem: %s' % (dt, rem)
div, rem = np.divmod(finf, fzer)
assert(np.isinf(div)), 'dt: %s, rem: %s' % (dt, rem)
assert(np.isnan(rem)), 'dt: %s, rem: %s' % (dt, rem)
div, rem = np.divmod(fnan, fone)
assert(np.isnan(rem)), "dt: %s, rem: %s" % (dt, rem)
assert(np.isnan(div)), "dt: %s, rem: %s" % (dt, rem)
div, rem = np.divmod(fone, fnan)
assert(np.isnan(rem)), "dt: %s, rem: %s" % (dt, rem)
assert(np.isnan(div)), "dt: %s, rem: %s" % (dt, rem)
div, rem = np.divmod(fnan, fzer)
assert(np.isnan(rem)), "dt: %s, rem: %s" % (dt, rem)
assert(np.isnan(div)), "dt: %s, rem: %s" % (dt, rem)
def test_float_remainder_corner_cases(self):
# Check remainder magnitude.
for dt in np.typecodes['Float']:
fone = np.array(1.0, dtype=dt)
fzer = np.array(0.0, dtype=dt)
fnan = np.array(np.nan, dtype=dt)
b = np.array(1.0, dtype=dt)
a = np.nextafter(np.array(0.0, dtype=dt), -b)
rem = np.remainder(a, b)
assert_(rem <= b, 'dt: %s' % dt)
rem = np.remainder(-a, -b)
assert_(rem >= -b, 'dt: %s' % dt)
# Check nans, inf
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "invalid value encountered in remainder")
sup.filter(RuntimeWarning, "invalid value encountered in fmod")
for dt in np.typecodes['Float']:
fone = np.array(1.0, dtype=dt)
fzer = np.array(0.0, dtype=dt)
finf = np.array(np.inf, dtype=dt)
fnan = np.array(np.nan, dtype=dt)
rem = np.remainder(fone, fzer)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
# MSVC 2008 returns NaN here, so disable the check.
#rem = np.remainder(fone, finf)
#assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem))
rem = np.remainder(finf, fone)
fmod = np.fmod(finf, fone)
assert_(np.isnan(fmod), 'dt: %s, fmod: %s' % (dt, fmod))
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
rem = np.remainder(finf, finf)
fmod = np.fmod(finf, fone)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
assert_(np.isnan(fmod), 'dt: %s, fmod: %s' % (dt, fmod))
rem = np.remainder(finf, fzer)
fmod = np.fmod(finf, fzer)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
assert_(np.isnan(fmod), 'dt: %s, fmod: %s' % (dt, fmod))
rem = np.remainder(fone, fnan)
fmod = np.fmod(fone, fnan)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
assert_(np.isnan(fmod), 'dt: %s, fmod: %s' % (dt, fmod))
rem = np.remainder(fnan, fzer)
fmod = np.fmod(fnan, fzer)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
assert_(np.isnan(fmod), 'dt: %s, fmod: %s' % (dt, rem))
rem = np.remainder(fnan, fone)
fmod = np.fmod(fnan, fone)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
assert_(np.isnan(fmod), 'dt: %s, fmod: %s' % (dt, rem))
class TestDivisionIntegerOverflowsAndDivideByZero:
result_type = namedtuple('result_type',
['nocast', 'casted'])
helper_lambdas = {
'zero': lambda dtype: 0,
'min': lambda dtype: np.iinfo(dtype).min,
'neg_min': lambda dtype: -np.iinfo(dtype).min,
'min-zero': lambda dtype: (np.iinfo(dtype).min, 0),
'neg_min-zero': lambda dtype: (-np.iinfo(dtype).min, 0),
}
overflow_results = {
np.remainder: result_type(
helper_lambdas['zero'], helper_lambdas['zero']),
np.fmod: result_type(
helper_lambdas['zero'], helper_lambdas['zero']),
operator.mod: result_type(
helper_lambdas['zero'], helper_lambdas['zero']),
operator.floordiv: result_type(
helper_lambdas['min'], helper_lambdas['neg_min']),
np.floor_divide: result_type(
helper_lambdas['min'], helper_lambdas['neg_min']),
np.divmod: result_type(
helper_lambdas['min-zero'], helper_lambdas['neg_min-zero'])
}
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
@pytest.mark.parametrize("dtype", np.typecodes["Integer"])
def test_signed_division_overflow(self, dtype):
to_check = interesting_binop_operands(np.iinfo(dtype).min, -1, dtype)
for op1, op2, extractor, operand_identifier in to_check:
with pytest.warns(RuntimeWarning, match="overflow encountered"):
res = op1 // op2
assert res.dtype == op1.dtype
assert extractor(res) == np.iinfo(op1.dtype).min
# Remainder is well defined though, and does not warn:
res = op1 % op2
assert res.dtype == op1.dtype
assert extractor(res) == 0
# Check fmod as well:
res = np.fmod(op1, op2)
assert extractor(res) == 0
# Divmod warns for the division part:
with pytest.warns(RuntimeWarning, match="overflow encountered"):
res1, res2 = np.divmod(op1, op2)
assert res1.dtype == res2.dtype == op1.dtype
assert extractor(res1) == np.iinfo(op1.dtype).min
assert extractor(res2) == 0
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
@pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
def test_divide_by_zero(self, dtype):
# Note that the return value cannot be well defined here, but NumPy
# currently uses 0 consistently. This could be changed.
to_check = interesting_binop_operands(1, 0, dtype)
for op1, op2, extractor, operand_identifier in to_check:
with pytest.warns(RuntimeWarning, match="divide by zero"):
res = op1 // op2
assert res.dtype == op1.dtype
assert extractor(res) == 0
with pytest.warns(RuntimeWarning, match="divide by zero"):
res1, res2 = np.divmod(op1, op2)
assert res1.dtype == res2.dtype == op1.dtype
assert extractor(res1) == 0
assert extractor(res2) == 0
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
@pytest.mark.parametrize("dividend_dtype",
np.sctypes['int'])
@pytest.mark.parametrize("divisor_dtype",
np.sctypes['int'])
@pytest.mark.parametrize("operation",
[np.remainder, np.fmod, np.divmod, np.floor_divide,
operator.mod, operator.floordiv])
@np.errstate(divide='warn', over='warn')
def test_overflows(self, dividend_dtype, divisor_dtype, operation):
# SIMD tries to perform the operation on as many elements as possible
# that is a multiple of the register's size. We resort to the
# default implementation for the leftover elements.
# We try to cover all paths here.
arrays = [np.array([np.iinfo(dividend_dtype).min]*i,
dtype=dividend_dtype) for i in range(1, 129)]
divisor = np.array([-1], dtype=divisor_dtype)
# If dividend is a larger type than the divisor (`else` case),
# then, result will be a larger type than dividend and will not
# result in an overflow for `divmod` and `floor_divide`.
if np.dtype(dividend_dtype).itemsize >= np.dtype(
divisor_dtype).itemsize and operation in (
np.divmod, np.floor_divide, operator.floordiv):
with pytest.warns(
RuntimeWarning,
match="overflow encountered in"):
result = operation(
dividend_dtype(np.iinfo(dividend_dtype).min),
divisor_dtype(-1)
)
assert result == self.overflow_results[operation].nocast(
dividend_dtype)
# Arrays
for a in arrays:
# In case of divmod, we need to flatten the result
# column first as we get a column vector of quotient and
# remainder and a normal flatten of the expected result.
with pytest.warns(
RuntimeWarning,
match="overflow encountered in"):
result = np.array(operation(a, divisor)).flatten('f')
expected_array = np.array(
[self.overflow_results[operation].nocast(
dividend_dtype)]*len(a)).flatten()
assert_array_equal(result, expected_array)
else:
# Scalars
result = operation(
dividend_dtype(np.iinfo(dividend_dtype).min),
divisor_dtype(-1)
)
assert result == self.overflow_results[operation].casted(
dividend_dtype)
# Arrays
for a in arrays:
# See above comment on flatten
result = np.array(operation(a, divisor)).flatten('f')
expected_array = np.array(
[self.overflow_results[operation].casted(
dividend_dtype)]*len(a)).flatten()
assert_array_equal(result, expected_array)
class TestCbrt:
def test_cbrt_scalar(self):
assert_almost_equal((np.cbrt(np.float32(-2.5)**3)), -2.5)
def test_cbrt(self):
x = np.array([1., 2., -3., np.inf, -np.inf])
assert_almost_equal(np.cbrt(x**3), x)
assert_(np.isnan(np.cbrt(np.nan)))
assert_equal(np.cbrt(np.inf), np.inf)
assert_equal(np.cbrt(-np.inf), -np.inf)
class TestPower:
def test_power_float(self):
x = np.array([1., 2., 3.])
assert_equal(x**0, [1., 1., 1.])
assert_equal(x**1, x)
assert_equal(x**2, [1., 4., 9.])
y = x.copy()
y **= 2
assert_equal(y, [1., 4., 9.])
assert_almost_equal(x**(-1), [1., 0.5, 1./3])
assert_almost_equal(x**(0.5), [1., ncu.sqrt(2), ncu.sqrt(3)])
for out, inp, msg in _gen_alignment_data(dtype=np.float32,
type='unary',
max_size=11):
exp = [ncu.sqrt(i) for i in inp]
assert_almost_equal(inp**(0.5), exp, err_msg=msg)
np.sqrt(inp, out=out)
assert_equal(out, exp, err_msg=msg)
for out, inp, msg in _gen_alignment_data(dtype=np.float64,
type='unary',
max_size=7):
exp = [ncu.sqrt(i) for i in inp]
assert_almost_equal(inp**(0.5), exp, err_msg=msg)
np.sqrt(inp, out=out)
assert_equal(out, exp, err_msg=msg)
def test_power_complex(self):
x = np.array([1+2j, 2+3j, 3+4j])
assert_equal(x**0, [1., 1., 1.])
assert_equal(x**1, x)
assert_almost_equal(x**2, [-3+4j, -5+12j, -7+24j])
assert_almost_equal(x**3, [(1+2j)**3, (2+3j)**3, (3+4j)**3])
assert_almost_equal(x**4, [(1+2j)**4, (2+3j)**4, (3+4j)**4])
assert_almost_equal(x**(-1), [1/(1+2j), 1/(2+3j), 1/(3+4j)])
assert_almost_equal(x**(-2), [1/(1+2j)**2, 1/(2+3j)**2, 1/(3+4j)**2])
assert_almost_equal(x**(-3), [(-11+2j)/125, (-46-9j)/2197,
(-117-44j)/15625])
assert_almost_equal(x**(0.5), [ncu.sqrt(1+2j), ncu.sqrt(2+3j),
ncu.sqrt(3+4j)])
norm = 1./((x**14)[0])
assert_almost_equal(x**14 * norm,
[i * norm for i in [-76443+16124j, 23161315+58317492j,
5583548873 + 2465133864j]])
# Ticket #836
def assert_complex_equal(x, y):
assert_array_equal(x.real, y.real)
assert_array_equal(x.imag, y.imag)
for z in [complex(0, np.inf), complex(1, np.inf)]:
z = np.array([z], dtype=np.complex_)
with np.errstate(invalid="ignore"):
assert_complex_equal(z**1, z)
assert_complex_equal(z**2, z*z)
assert_complex_equal(z**3, z*z*z)
def test_power_zero(self):
# ticket #1271
zero = np.array([0j])
one = np.array([1+0j])
cnan = np.array([complex(np.nan, np.nan)])
# FIXME cinf not tested.
#cinf = np.array([complex(np.inf, 0)])
def assert_complex_equal(x, y):
x, y = np.asarray(x), np.asarray(y)
assert_array_equal(x.real, y.real)
assert_array_equal(x.imag, y.imag)
# positive powers
for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]:
assert_complex_equal(np.power(zero, p), zero)
# zero power
assert_complex_equal(np.power(zero, 0), one)
with np.errstate(invalid="ignore"):
assert_complex_equal(np.power(zero, 0+1j), cnan)
# negative power
for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]:
assert_complex_equal(np.power(zero, -p), cnan)
assert_complex_equal(np.power(zero, -1+0.2j), cnan)
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
def test_zero_power_nonzero(self):
# Testing 0^{Non-zero} issue 18378
zero = np.array([0.0+0.0j])
cnan = np.array([complex(np.nan, np.nan)])
def assert_complex_equal(x, y):
assert_array_equal(x.real, y.real)
assert_array_equal(x.imag, y.imag)
#Complex powers with positive real part will not generate a warning
assert_complex_equal(np.power(zero, 1+4j), zero)
assert_complex_equal(np.power(zero, 2-3j), zero)
#Testing zero values when real part is greater than zero
assert_complex_equal(np.power(zero, 1+1j), zero)
assert_complex_equal(np.power(zero, 1+0j), zero)
assert_complex_equal(np.power(zero, 1-1j), zero)
#Complex powers will negative real part or 0 (provided imaginary
# part is not zero) will generate a NAN and hence a RUNTIME warning
with pytest.warns(expected_warning=RuntimeWarning) as r:
assert_complex_equal(np.power(zero, -1+1j), cnan)
assert_complex_equal(np.power(zero, -2-3j), cnan)
assert_complex_equal(np.power(zero, -7+0j), cnan)
assert_complex_equal(np.power(zero, 0+1j), cnan)
assert_complex_equal(np.power(zero, 0-1j), cnan)
assert len(r) == 5
def test_fast_power(self):
x = np.array([1, 2, 3], np.int16)
res = x**2.0
assert_((x**2.00001).dtype is res.dtype)
assert_array_equal(res, [1, 4, 9])
# check the inplace operation on the casted copy doesn't mess with x
assert_(not np.may_share_memory(res, x))
assert_array_equal(x, [1, 2, 3])
# Check that the fast path ignores 1-element not 0-d arrays
res = x ** np.array([[[2]]])
assert_equal(res.shape, (1, 1, 3))
def test_integer_power(self):
a = np.array([15, 15], 'i8')
b = np.power(a, a)
assert_equal(b, [437893890380859375, 437893890380859375])
def test_integer_power_with_integer_zero_exponent(self):
dtypes = np.typecodes['Integer']
for dt in dtypes:
arr = np.arange(-10, 10, dtype=dt)
assert_equal(np.power(arr, 0), np.ones_like(arr))
dtypes = np.typecodes['UnsignedInteger']
for dt in dtypes:
arr = np.arange(10, dtype=dt)
assert_equal(np.power(arr, 0), np.ones_like(arr))
def test_integer_power_of_1(self):
dtypes = np.typecodes['AllInteger']
for dt in dtypes:
arr = np.arange(10, dtype=dt)
assert_equal(np.power(1, arr), np.ones_like(arr))
def test_integer_power_of_zero(self):
dtypes = np.typecodes['AllInteger']
for dt in dtypes:
arr = np.arange(1, 10, dtype=dt)
assert_equal(np.power(0, arr), np.zeros_like(arr))
def test_integer_to_negative_power(self):
dtypes = np.typecodes['Integer']
for dt in dtypes:
a = np.array([0, 1, 2, 3], dtype=dt)
b = np.array([0, 1, 2, -3], dtype=dt)
one = np.array(1, dtype=dt)
minusone = np.array(-1, dtype=dt)
assert_raises(ValueError, np.power, a, b)
assert_raises(ValueError, np.power, a, minusone)
assert_raises(ValueError, np.power, one, b)
assert_raises(ValueError, np.power, one, minusone)
def test_float_to_inf_power(self):
for dt in [np.float32, np.float64]:
a = np.array([1, 1, 2, 2, -2, -2, np.inf, -np.inf], dt)
b = np.array([np.inf, -np.inf, np.inf, -np.inf,
np.inf, -np.inf, np.inf, -np.inf], dt)
r = np.array([1, 1, np.inf, 0, np.inf, 0, np.inf, 0], dt)
assert_equal(np.power(a, b), r)
class TestFloat_power:
def test_type_conversion(self):
arg_type = '?bhilBHILefdgFDG'
res_type = 'ddddddddddddgDDG'
for dtin, dtout in zip(arg_type, res_type):
msg = "dtin: %s, dtout: %s" % (dtin, dtout)
arg = np.ones(1, dtype=dtin)
res = np.float_power(arg, arg)
assert_(res.dtype.name == np.dtype(dtout).name, msg)
class TestLog2:
@pytest.mark.parametrize('dt', ['f', 'd', 'g'])
def test_log2_values(self, dt):
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_almost_equal(np.log2(xf), yf)
@pytest.mark.parametrize("i", range(1, 65))
def test_log2_ints(self, i):
# a good log2 implementation should provide this,
# might fail on OS with bad libm
v = np.log2(2.**i)
assert_equal(v, float(i), err_msg='at exponent %d' % i)
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
def test_log2_special(self):
assert_equal(np.log2(1.), 0.)
assert_equal(np.log2(np.inf), np.inf)
assert_(np.isnan(np.log2(np.nan)))
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_(np.isnan(np.log2(-1.)))
assert_(np.isnan(np.log2(-np.inf)))
assert_equal(np.log2(0.), -np.inf)
assert_(w[0].category is RuntimeWarning)
assert_(w[1].category is RuntimeWarning)
assert_(w[2].category is RuntimeWarning)
class TestExp2:
def test_exp2_values(self):
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for dt in ['f', 'd', 'g']:
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_almost_equal(np.exp2(yf), xf)
class TestLogAddExp2(_FilterInvalids):
# Need test for intermediate precisions
def test_logaddexp2_values(self):
x = [1, 2, 3, 4, 5]
y = [5, 4, 3, 2, 1]
z = [6, 6, 6, 6, 6]
for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]):
xf = np.log2(np.array(x, dtype=dt))
yf = np.log2(np.array(y, dtype=dt))
zf = np.log2(np.array(z, dtype=dt))
assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec_)
def test_logaddexp2_range(self):
x = [1000000, -1000000, 1000200, -1000200]
y = [1000200, -1000200, 1000000, -1000000]
z = [1000200, -1000000, 1000200, -1000000]
for dt in ['f', 'd', 'g']:
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
def test_inf(self):
inf = np.inf
x = [inf, -inf, inf, -inf, inf, 1, -inf, 1]
y = [inf, inf, -inf, -inf, 1, inf, 1, -inf]
z = [inf, inf, inf, -inf, inf, inf, 1, 1]
with np.errstate(invalid='raise'):
for dt in ['f', 'd', 'g']:
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
assert_equal(np.logaddexp2(logxf, logyf), logzf)
def test_nan(self):
assert_(np.isnan(np.logaddexp2(np.nan, np.inf)))
assert_(np.isnan(np.logaddexp2(np.inf, np.nan)))
assert_(np.isnan(np.logaddexp2(np.nan, 0)))
assert_(np.isnan(np.logaddexp2(0, np.nan)))
assert_(np.isnan(np.logaddexp2(np.nan, np.nan)))
def test_reduce(self):
assert_equal(np.logaddexp2.identity, -np.inf)
assert_equal(np.logaddexp2.reduce([]), -np.inf)
assert_equal(np.logaddexp2.reduce([-np.inf]), -np.inf)
assert_equal(np.logaddexp2.reduce([-np.inf, 0]), 0)
class TestLog:
def test_log_values(self):
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for dt in ['f', 'd', 'g']:
log2_ = 0.69314718055994530943
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)*log2_
assert_almost_equal(np.log(xf), yf)
# test aliasing(issue #17761)
x = np.array([2, 0.937500, 3, 0.947500, 1.054697])
xf = np.log(x)
assert_almost_equal(np.log(x, out=x), xf)
# test log() of max for dtype does not raise
for dt in ['f', 'd', 'g']:
try:
with np.errstate(all='raise'):
x = np.finfo(dt).max
np.log(x)
except FloatingPointError as exc:
if dt == 'g' and IS_MUSL:
# FloatingPointError is known to occur on longdouble
# for musllinux_x86_64 x is very large
pytest.skip(
"Overflow has occurred for"
" np.log(np.finfo(np.longdouble).max)"
)
else:
raise exc
def test_log_strides(self):
np.random.seed(42)
strides = np.array([-4,-3,-2,-1,1,2,3,4])
sizes = np.arange(2,100)
for ii in sizes:
x_f64 = np.float64(np.random.uniform(low=0.01, high=100.0,size=ii))
x_special = x_f64.copy()
x_special[3:-1:4] = 1.0
y_true = np.log(x_f64)
y_special = np.log(x_special)
for jj in strides:
assert_array_almost_equal_nulp(np.log(x_f64[::jj]), y_true[::jj], nulp=2)
assert_array_almost_equal_nulp(np.log(x_special[::jj]), y_special[::jj], nulp=2)
class TestExp:
def test_exp_values(self):
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for dt in ['f', 'd', 'g']:
log2_ = 0.69314718055994530943
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)*log2_
assert_almost_equal(np.exp(yf), xf)
def test_exp_strides(self):
np.random.seed(42)
strides = np.array([-4,-3,-2,-1,1,2,3,4])
sizes = np.arange(2,100)
for ii in sizes:
x_f64 = np.float64(np.random.uniform(low=0.01, high=709.1,size=ii))
y_true = np.exp(x_f64)
for jj in strides:
assert_array_almost_equal_nulp(np.exp(x_f64[::jj]), y_true[::jj], nulp=2)
class TestSpecialFloats:
def test_exp_values(self):
with np.errstate(under='raise', over='raise'):
x = [np.nan, np.nan, np.inf, 0.]
y = [np.nan, -np.nan, np.inf, -np.inf]
for dt in ['e', 'f', 'd', 'g']:
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_equal(np.exp(yf), xf)
# See: https://github.com/numpy/numpy/issues/19192
@pytest.mark.xfail(
_glibc_older_than("2.17"),
reason="Older glibc versions may not raise appropriate FP exceptions"
)
def test_exp_exceptions(self):
with np.errstate(over='raise'):
assert_raises(FloatingPointError, np.exp, np.float16(11.0899))
assert_raises(FloatingPointError, np.exp, np.float32(100.))
assert_raises(FloatingPointError, np.exp, np.float32(1E19))
assert_raises(FloatingPointError, np.exp, np.float64(800.))
assert_raises(FloatingPointError, np.exp, np.float64(1E19))
with np.errstate(under='raise'):
assert_raises(FloatingPointError, np.exp, np.float16(-17.5))
assert_raises(FloatingPointError, np.exp, np.float32(-1000.))
assert_raises(FloatingPointError, np.exp, np.float32(-1E19))
assert_raises(FloatingPointError, np.exp, np.float64(-1000.))
assert_raises(FloatingPointError, np.exp, np.float64(-1E19))
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
def test_log_values(self):
with np.errstate(all='ignore'):
x = [np.nan, np.nan, np.inf, np.nan, -np.inf, np.nan]
y = [np.nan, -np.nan, np.inf, -np.inf, 0.0, -1.0]
y1p = [np.nan, -np.nan, np.inf, -np.inf, -1.0, -2.0]
for dt in ['e', 'f', 'd', 'g']:
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
yf1p = np.array(y1p, dtype=dt)
assert_equal(np.log(yf), xf)
assert_equal(np.log2(yf), xf)
assert_equal(np.log10(yf), xf)
assert_equal(np.log1p(yf1p), xf)
with np.errstate(divide='raise'):
for dt in ['e', 'f', 'd']:
assert_raises(FloatingPointError, np.log,
np.array(0.0, dtype=dt))
assert_raises(FloatingPointError, np.log2,
np.array(0.0, dtype=dt))
assert_raises(FloatingPointError, np.log10,
np.array(0.0, dtype=dt))
assert_raises(FloatingPointError, np.log1p,
np.array(-1.0, dtype=dt))
with np.errstate(invalid='raise'):
for dt in ['e', 'f', 'd']:
assert_raises(FloatingPointError, np.log,
np.array(-np.inf, dtype=dt))
assert_raises(FloatingPointError, np.log,
np.array(-1.0, dtype=dt))
assert_raises(FloatingPointError, np.log2,
np.array(-np.inf, dtype=dt))
assert_raises(FloatingPointError, np.log2,
np.array(-1.0, dtype=dt))
assert_raises(FloatingPointError, np.log10,
np.array(-np.inf, dtype=dt))
assert_raises(FloatingPointError, np.log10,
np.array(-1.0, dtype=dt))
assert_raises(FloatingPointError, np.log1p,
np.array(-np.inf, dtype=dt))
assert_raises(FloatingPointError, np.log1p,
np.array(-2.0, dtype=dt))
# See https://github.com/numpy/numpy/issues/18005
with assert_no_warnings():
a = np.array(1e9, dtype='float32')
np.log(a)
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
@pytest.mark.parametrize('dtype', ['e', 'f', 'd', 'g'])
def test_sincos_values(self, dtype):
with np.errstate(all='ignore'):
x = [np.nan, np.nan, np.nan, np.nan]
y = [np.nan, -np.nan, np.inf, -np.inf]
xf = np.array(x, dtype=dtype)
yf = np.array(y, dtype=dtype)
assert_equal(np.sin(yf), xf)
assert_equal(np.cos(yf), xf)
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
@pytest.mark.xfail(
sys.platform.startswith("darwin"),
reason="underflow is triggered for scalar 'sin'"
)
def test_sincos_underflow(self):
with np.errstate(under='raise'):
underflow_trigger = np.array(
float.fromhex("0x1.f37f47a03f82ap-511"),
dtype=np.float64
)
np.sin(underflow_trigger)
np.cos(underflow_trigger)
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
@pytest.mark.parametrize('callable', [np.sin, np.cos])
@pytest.mark.parametrize('dtype', ['e', 'f', 'd'])
@pytest.mark.parametrize('value', [np.inf, -np.inf])
def test_sincos_errors(self, callable, dtype, value):
with np.errstate(invalid='raise'):
assert_raises(FloatingPointError, callable,
np.array([value], dtype=dtype))
@pytest.mark.parametrize('callable', [np.sin, np.cos])
@pytest.mark.parametrize('dtype', ['f', 'd'])
@pytest.mark.parametrize('stride', [-1, 1, 2, 4, 5])
def test_sincos_overlaps(self, callable, dtype, stride):
N = 100
M = N // abs(stride)
rng = np.random.default_rng(42)
x = rng.standard_normal(N, dtype)
y = callable(x[::stride])
callable(x[::stride], out=x[:M])
assert_equal(x[:M], y)
@pytest.mark.parametrize('dt', ['e', 'f', 'd', 'g'])
def test_sqrt_values(self, dt):
with np.errstate(all='ignore'):
x = [np.nan, np.nan, np.inf, np.nan, 0.]
y = [np.nan, -np.nan, np.inf, -np.inf, 0.]
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_equal(np.sqrt(yf), xf)
# with np.errstate(invalid='raise'):
# assert_raises(
# FloatingPointError, np.sqrt, np.array(-100., dtype=dt)
# )
def test_abs_values(self):
x = [np.nan, np.nan, np.inf, np.inf, 0., 0., 1.0, 1.0]
y = [np.nan, -np.nan, np.inf, -np.inf, 0., -0., -1.0, 1.0]
for dt in ['e', 'f', 'd', 'g']:
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_equal(np.abs(yf), xf)
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
def test_square_values(self):
x = [np.nan, np.nan, np.inf, np.inf]
y = [np.nan, -np.nan, np.inf, -np.inf]
with np.errstate(all='ignore'):
for dt in ['e', 'f', 'd', 'g']:
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_equal(np.square(yf), xf)
with np.errstate(over='raise'):
assert_raises(FloatingPointError, np.square,
np.array(1E3, dtype='e'))
assert_raises(FloatingPointError, np.square,
np.array(1E32, dtype='f'))
assert_raises(FloatingPointError, np.square,
np.array(1E200, dtype='d'))
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
def test_reciprocal_values(self):
with np.errstate(all='ignore'):
x = [np.nan, np.nan, 0.0, -0.0, np.inf, -np.inf]
y = [np.nan, -np.nan, np.inf, -np.inf, 0., -0.]
for dt in ['e', 'f', 'd', 'g']:
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_equal(np.reciprocal(yf), xf)
with np.errstate(divide='raise'):
for dt in ['e', 'f', 'd', 'g']:
assert_raises(FloatingPointError, np.reciprocal,
np.array(-0.0, dtype=dt))
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
def test_tan(self):
with np.errstate(all='ignore'):
in_ = [np.nan, -np.nan, 0.0, -0.0, np.inf, -np.inf]
out = [np.nan, np.nan, 0.0, -0.0, np.nan, np.nan]
for dt in ['e', 'f', 'd']:
in_arr = np.array(in_, dtype=dt)
out_arr = np.array(out, dtype=dt)
assert_equal(np.tan(in_arr), out_arr)
with np.errstate(invalid='raise'):
for dt in ['e', 'f', 'd']:
assert_raises(FloatingPointError, np.tan,
np.array(np.inf, dtype=dt))
assert_raises(FloatingPointError, np.tan,
np.array(-np.inf, dtype=dt))
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
def test_arcsincos(self):
with np.errstate(all='ignore'):
in_ = [np.nan, -np.nan, np.inf, -np.inf]
out = [np.nan, np.nan, np.nan, np.nan]
for dt in ['e', 'f', 'd']:
in_arr = np.array(in_, dtype=dt)
out_arr = np.array(out, dtype=dt)
assert_equal(np.arcsin(in_arr), out_arr)
assert_equal(np.arccos(in_arr), out_arr)
for callable in [np.arcsin, np.arccos]:
for value in [np.inf, -np.inf, 2.0, -2.0]:
for dt in ['e', 'f', 'd']:
with np.errstate(invalid='raise'):
assert_raises(FloatingPointError, callable,
np.array(value, dtype=dt))
def test_arctan(self):
with np.errstate(all='ignore'):
in_ = [np.nan, -np.nan]
out = [np.nan, np.nan]
for dt in ['e', 'f', 'd']:
in_arr = np.array(in_, dtype=dt)
out_arr = np.array(out, dtype=dt)
assert_equal(np.arctan(in_arr), out_arr)
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
def test_sinh(self):
in_ = [np.nan, -np.nan, np.inf, -np.inf]
out = [np.nan, np.nan, np.inf, -np.inf]
for dt in ['e', 'f', 'd']:
in_arr = np.array(in_, dtype=dt)
out_arr = np.array(out, dtype=dt)
assert_equal(np.sinh(in_arr), out_arr)
with np.errstate(over='raise'):
assert_raises(FloatingPointError, np.sinh,
np.array(12.0, dtype='e'))
assert_raises(FloatingPointError, np.sinh,
np.array(120.0, dtype='f'))
assert_raises(FloatingPointError, np.sinh,
np.array(1200.0, dtype='d'))
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
def test_cosh(self):
in_ = [np.nan, -np.nan, np.inf, -np.inf]
out = [np.nan, np.nan, np.inf, np.inf]
for dt in ['e', 'f', 'd']:
in_arr = np.array(in_, dtype=dt)
out_arr = np.array(out, dtype=dt)
assert_equal(np.cosh(in_arr), out_arr)
with np.errstate(over='raise'):
assert_raises(FloatingPointError, np.cosh,
np.array(12.0, dtype='e'))
assert_raises(FloatingPointError, np.cosh,
np.array(120.0, dtype='f'))
assert_raises(FloatingPointError, np.cosh,
np.array(1200.0, dtype='d'))
def test_tanh(self):
in_ = [np.nan, -np.nan, np.inf, -np.inf]
out = [np.nan, np.nan, 1.0, -1.0]
for dt in ['e', 'f', 'd']:
in_arr = np.array(in_, dtype=dt)
out_arr = np.array(out, dtype=dt)
assert_equal(np.tanh(in_arr), out_arr)
def test_arcsinh(self):
in_ = [np.nan, -np.nan, np.inf, -np.inf]
out = [np.nan, np.nan, np.inf, -np.inf]
for dt in ['e', 'f', 'd']:
in_arr = np.array(in_, dtype=dt)
out_arr = np.array(out, dtype=dt)
assert_equal(np.arcsinh(in_arr), out_arr)
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
def test_arccosh(self):
with np.errstate(all='ignore'):
in_ = [np.nan, -np.nan, np.inf, -np.inf, 1.0, 0.0]
out = [np.nan, np.nan, np.inf, np.nan, 0.0, np.nan]
for dt in ['e', 'f', 'd']:
in_arr = np.array(in_, dtype=dt)
out_arr = np.array(out, dtype=dt)
assert_equal(np.arccosh(in_arr), out_arr)
for value in [0.0, -np.inf]:
with np.errstate(invalid='raise'):
for dt in ['e', 'f', 'd']:
assert_raises(FloatingPointError, np.arccosh,
np.array(value, dtype=dt))
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
def test_arctanh(self):
with np.errstate(all='ignore'):
in_ = [np.nan, -np.nan, np.inf, -np.inf, 1.0, -1.0, 2.0]
out = [np.nan, np.nan, np.nan, np.nan, np.inf, -np.inf, np.nan]
for dt in ['e', 'f', 'd']:
in_arr = np.array(in_, dtype=dt)
out_arr = np.array(out, dtype=dt)
assert_equal(np.arctanh(in_arr), out_arr)
for value in [1.01, np.inf, -np.inf, 1.0, -1.0]:
with np.errstate(invalid='raise', divide='raise'):
for dt in ['e', 'f', 'd']:
assert_raises(FloatingPointError, np.arctanh,
np.array(value, dtype=dt))
# See: https://github.com/numpy/numpy/issues/20448
@pytest.mark.xfail(
_glibc_older_than("2.17"),
reason="Older glibc versions may not raise appropriate FP exceptions"
)
def test_exp2(self):
with np.errstate(all='ignore'):
in_ = [np.nan, -np.nan, np.inf, -np.inf]
out = [np.nan, np.nan, np.inf, 0.0]
for dt in ['e', 'f', 'd']:
in_arr = np.array(in_, dtype=dt)
out_arr = np.array(out, dtype=dt)
assert_equal(np.exp2(in_arr), out_arr)
for value in [2000.0, -2000.0]:
with np.errstate(over='raise', under='raise'):
for dt in ['e', 'f', 'd']:
assert_raises(FloatingPointError, np.exp2,
np.array(value, dtype=dt))
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
def test_expm1(self):
with np.errstate(all='ignore'):
in_ = [np.nan, -np.nan, np.inf, -np.inf]
out = [np.nan, np.nan, np.inf, -1.0]
for dt in ['e', 'f', 'd']:
in_arr = np.array(in_, dtype=dt)
out_arr = np.array(out, dtype=dt)
assert_equal(np.expm1(in_arr), out_arr)
for value in [200.0, 2000.0]:
with np.errstate(over='raise'):
for dt in ['e', 'f']:
assert_raises(FloatingPointError, np.expm1,
np.array(value, dtype=dt))
# test to ensure no spurious FP exceptions are raised due to SIMD
INF_INVALID_ERR = [
np.cos, np.sin, np.tan, np.arccos, np.arcsin, np.spacing, np.arctanh
]
NEG_INVALID_ERR = [
np.log, np.log2, np.log10, np.log1p, np.sqrt, np.arccosh,
np.arctanh
]
ONE_INVALID_ERR = [
np.arctanh,
]
LTONE_INVALID_ERR = [
np.arccosh,
]
BYZERO_ERR = [
np.log, np.log2, np.log10, np.reciprocal, np.arccosh
]
@pytest.mark.parametrize("ufunc", UFUNCS_UNARY_FP)
@pytest.mark.parametrize("dtype", ('e', 'f', 'd'))
@pytest.mark.parametrize("data, escape", (
([0.03], LTONE_INVALID_ERR),
([0.03]*32, LTONE_INVALID_ERR),
# neg
([-1.0], NEG_INVALID_ERR),
([-1.0]*32, NEG_INVALID_ERR),
# flat
([1.0], ONE_INVALID_ERR),
([1.0]*32, ONE_INVALID_ERR),
# zero
([0.0], BYZERO_ERR),
([0.0]*32, BYZERO_ERR),
([-0.0], BYZERO_ERR),
([-0.0]*32, BYZERO_ERR),
# nan
([0.5, 0.5, 0.5, np.nan], LTONE_INVALID_ERR),
([0.5, 0.5, 0.5, np.nan]*32, LTONE_INVALID_ERR),
([np.nan, 1.0, 1.0, 1.0], ONE_INVALID_ERR),
([np.nan, 1.0, 1.0, 1.0]*32, ONE_INVALID_ERR),
([np.nan], []),
([np.nan]*32, []),
# inf
([0.5, 0.5, 0.5, np.inf], INF_INVALID_ERR + LTONE_INVALID_ERR),
([0.5, 0.5, 0.5, np.inf]*32, INF_INVALID_ERR + LTONE_INVALID_ERR),
([np.inf, 1.0, 1.0, 1.0], INF_INVALID_ERR),
([np.inf, 1.0, 1.0, 1.0]*32, INF_INVALID_ERR),
([np.inf], INF_INVALID_ERR),
([np.inf]*32, INF_INVALID_ERR),
# ninf
([0.5, 0.5, 0.5, -np.inf],
NEG_INVALID_ERR + INF_INVALID_ERR + LTONE_INVALID_ERR),
([0.5, 0.5, 0.5, -np.inf]*32,
NEG_INVALID_ERR + INF_INVALID_ERR + LTONE_INVALID_ERR),
([-np.inf, 1.0, 1.0, 1.0], NEG_INVALID_ERR + INF_INVALID_ERR),
([-np.inf, 1.0, 1.0, 1.0]*32, NEG_INVALID_ERR + INF_INVALID_ERR),
([-np.inf], NEG_INVALID_ERR + INF_INVALID_ERR),
([-np.inf]*32, NEG_INVALID_ERR + INF_INVALID_ERR),
))
def test_unary_spurious_fpexception(self, ufunc, dtype, data, escape):
if escape and ufunc in escape:
return
# FIXME: NAN raises FP invalid exception:
# - ceil/float16 on MSVC:32-bit
# - spacing/float16 on almost all platforms
if ufunc in (np.spacing, np.ceil) and dtype == 'e':
return
array = np.array(data, dtype=dtype)
with assert_no_warnings():
ufunc(array)
class TestFPClass:
@pytest.mark.parametrize("stride", [-5, -4, -3, -2, -1, 1,
2, 4, 5, 6, 7, 8, 9, 10])
def test_fpclass(self, stride):
arr_f64 = np.array([np.nan, -np.nan, np.inf, -np.inf, -1.0, 1.0, -0.0, 0.0, 2.2251e-308, -2.2251e-308], dtype='d')
arr_f32 = np.array([np.nan, -np.nan, np.inf, -np.inf, -1.0, 1.0, -0.0, 0.0, 1.4013e-045, -1.4013e-045], dtype='f')
nan = np.array([True, True, False, False, False, False, False, False, False, False])
inf = np.array([False, False, True, True, False, False, False, False, False, False])
sign = np.array([False, True, False, True, True, False, True, False, False, True])
finite = np.array([False, False, False, False, True, True, True, True, True, True])
assert_equal(np.isnan(arr_f32[::stride]), nan[::stride])
assert_equal(np.isnan(arr_f64[::stride]), nan[::stride])
assert_equal(np.isinf(arr_f32[::stride]), inf[::stride])
assert_equal(np.isinf(arr_f64[::stride]), inf[::stride])
assert_equal(np.signbit(arr_f32[::stride]), sign[::stride])
assert_equal(np.signbit(arr_f64[::stride]), sign[::stride])
assert_equal(np.isfinite(arr_f32[::stride]), finite[::stride])
assert_equal(np.isfinite(arr_f64[::stride]), finite[::stride])
@pytest.mark.parametrize("dtype", ['d', 'f'])
def test_fp_noncontiguous(self, dtype):
data = np.array([np.nan, -np.nan, np.inf, -np.inf, -1.0,
1.0, -0.0, 0.0, 2.2251e-308,
-2.2251e-308], dtype=dtype)
nan = np.array([True, True, False, False, False, False,
False, False, False, False])
inf = np.array([False, False, True, True, False, False,
False, False, False, False])
sign = np.array([False, True, False, True, True, False,
True, False, False, True])
finite = np.array([False, False, False, False, True, True,
True, True, True, True])
out = np.ndarray(data.shape, dtype='bool')
ncontig_in = data[1::3]
ncontig_out = out[1::3]
contig_in = np.array(ncontig_in)
assert_equal(ncontig_in.flags.c_contiguous, False)
assert_equal(ncontig_out.flags.c_contiguous, False)
assert_equal(contig_in.flags.c_contiguous, True)
# ncontig in, ncontig out
assert_equal(np.isnan(ncontig_in, out=ncontig_out), nan[1::3])
assert_equal(np.isinf(ncontig_in, out=ncontig_out), inf[1::3])
assert_equal(np.signbit(ncontig_in, out=ncontig_out), sign[1::3])
assert_equal(np.isfinite(ncontig_in, out=ncontig_out), finite[1::3])
# contig in, ncontig out
assert_equal(np.isnan(contig_in, out=ncontig_out), nan[1::3])
assert_equal(np.isinf(contig_in, out=ncontig_out), inf[1::3])
assert_equal(np.signbit(contig_in, out=ncontig_out), sign[1::3])
assert_equal(np.isfinite(contig_in, out=ncontig_out), finite[1::3])
# ncontig in, contig out
assert_equal(np.isnan(ncontig_in), nan[1::3])
assert_equal(np.isinf(ncontig_in), inf[1::3])
assert_equal(np.signbit(ncontig_in), sign[1::3])
assert_equal(np.isfinite(ncontig_in), finite[1::3])
# contig in, contig out, nd stride
data_split = np.array(np.array_split(data, 2))
nan_split = np.array(np.array_split(nan, 2))
inf_split = np.array(np.array_split(inf, 2))
sign_split = np.array(np.array_split(sign, 2))
finite_split = np.array(np.array_split(finite, 2))
assert_equal(np.isnan(data_split), nan_split)
assert_equal(np.isinf(data_split), inf_split)
assert_equal(np.signbit(data_split), sign_split)
assert_equal(np.isfinite(data_split), finite_split)
class TestLDExp:
@pytest.mark.parametrize("stride", [-4,-2,-1,1,2,4])
@pytest.mark.parametrize("dtype", ['f', 'd'])
def test_ldexp(self, dtype, stride):
mant = np.array([0.125, 0.25, 0.5, 1., 1., 2., 4., 8.], dtype=dtype)
exp = np.array([3, 2, 1, 0, 0, -1, -2, -3], dtype='i')
out = np.zeros(8, dtype=dtype)
assert_equal(np.ldexp(mant[::stride], exp[::stride], out=out[::stride]), np.ones(8, dtype=dtype)[::stride])
assert_equal(out[::stride], np.ones(8, dtype=dtype)[::stride])
class TestFRExp:
@pytest.mark.parametrize("stride", [-4,-2,-1,1,2,4])
@pytest.mark.parametrize("dtype", ['f', 'd'])
@pytest.mark.xfail(IS_MUSL, reason="gh23048")
@pytest.mark.skipif(not sys.platform.startswith('linux'),
reason="np.frexp gives different answers for NAN/INF on windows and linux")
def test_frexp(self, dtype, stride):
arr = np.array([np.nan, np.nan, np.inf, -np.inf, 0.0, -0.0, 1.0, -1.0], dtype=dtype)
mant_true = np.array([np.nan, np.nan, np.inf, -np.inf, 0.0, -0.0, 0.5, -0.5], dtype=dtype)
exp_true = np.array([0, 0, 0, 0, 0, 0, 1, 1], dtype='i')
out_mant = np.ones(8, dtype=dtype)
out_exp = 2*np.ones(8, dtype='i')
mant, exp = np.frexp(arr[::stride], out=(out_mant[::stride], out_exp[::stride]))
assert_equal(mant_true[::stride], mant)
assert_equal(exp_true[::stride], exp)
assert_equal(out_mant[::stride], mant_true[::stride])
assert_equal(out_exp[::stride], exp_true[::stride])
# func : [maxulperror, low, high]
avx_ufuncs = {'sqrt' :[1, 0., 100.],
'absolute' :[0, -100., 100.],
'reciprocal' :[1, 1., 100.],
'square' :[1, -100., 100.],
'rint' :[0, -100., 100.],
'floor' :[0, -100., 100.],
'ceil' :[0, -100., 100.],
'trunc' :[0, -100., 100.]}
class TestAVXUfuncs:
def test_avx_based_ufunc(self):
strides = np.array([-4,-3,-2,-1,1,2,3,4])
np.random.seed(42)
for func, prop in avx_ufuncs.items():
maxulperr = prop[0]
minval = prop[1]
maxval = prop[2]
# various array sizes to ensure masking in AVX is tested
for size in range(1,32):
myfunc = getattr(np, func)
x_f32 = np.float32(np.random.uniform(low=minval, high=maxval,
size=size))
x_f64 = np.float64(x_f32)
x_f128 = np.longdouble(x_f32)
y_true128 = myfunc(x_f128)
if maxulperr == 0:
assert_equal(myfunc(x_f32), np.float32(y_true128))
assert_equal(myfunc(x_f64), np.float64(y_true128))
else:
assert_array_max_ulp(myfunc(x_f32), np.float32(y_true128),
maxulp=maxulperr)
assert_array_max_ulp(myfunc(x_f64), np.float64(y_true128),
maxulp=maxulperr)
# various strides to test gather instruction
if size > 1:
y_true32 = myfunc(x_f32)
y_true64 = myfunc(x_f64)
for jj in strides:
assert_equal(myfunc(x_f64[::jj]), y_true64[::jj])
assert_equal(myfunc(x_f32[::jj]), y_true32[::jj])
class TestAVXFloat32Transcendental:
def test_exp_float32(self):
np.random.seed(42)
x_f32 = np.float32(np.random.uniform(low=0.0,high=88.1,size=1000000))
x_f64 = np.float64(x_f32)
assert_array_max_ulp(np.exp(x_f32), np.float32(np.exp(x_f64)), maxulp=3)
def test_log_float32(self):
np.random.seed(42)
x_f32 = np.float32(np.random.uniform(low=0.0,high=1000,size=1000000))
x_f64 = np.float64(x_f32)
assert_array_max_ulp(np.log(x_f32), np.float32(np.log(x_f64)), maxulp=4)
def test_sincos_float32(self):
np.random.seed(42)
N = 1000000
M = np.int_(N/20)
index = np.random.randint(low=0, high=N, size=M)
x_f32 = np.float32(np.random.uniform(low=-100.,high=100.,size=N))
if not _glibc_older_than("2.17"):
# test coverage for elements > 117435.992f for which glibc is used
# this is known to be problematic on old glibc, so skip it there
x_f32[index] = np.float32(10E+10*np.random.rand(M))
x_f64 = np.float64(x_f32)
assert_array_max_ulp(np.sin(x_f32), np.float32(np.sin(x_f64)), maxulp=2)
assert_array_max_ulp(np.cos(x_f32), np.float32(np.cos(x_f64)), maxulp=2)
# test aliasing(issue #17761)
tx_f32 = x_f32.copy()
assert_array_max_ulp(np.sin(x_f32, out=x_f32), np.float32(np.sin(x_f64)), maxulp=2)
assert_array_max_ulp(np.cos(tx_f32, out=tx_f32), np.float32(np.cos(x_f64)), maxulp=2)
def test_strided_float32(self):
np.random.seed(42)
strides = np.array([-4,-3,-2,-1,1,2,3,4])
sizes = np.arange(2,100)
for ii in sizes:
x_f32 = np.float32(np.random.uniform(low=0.01,high=88.1,size=ii))
x_f32_large = x_f32.copy()
x_f32_large[3:-1:4] = 120000.0
exp_true = np.exp(x_f32)
log_true = np.log(x_f32)
sin_true = np.sin(x_f32_large)
cos_true = np.cos(x_f32_large)
for jj in strides:
assert_array_almost_equal_nulp(np.exp(x_f32[::jj]), exp_true[::jj], nulp=2)
assert_array_almost_equal_nulp(np.log(x_f32[::jj]), log_true[::jj], nulp=2)
assert_array_almost_equal_nulp(np.sin(x_f32_large[::jj]), sin_true[::jj], nulp=2)
assert_array_almost_equal_nulp(np.cos(x_f32_large[::jj]), cos_true[::jj], nulp=2)
class TestLogAddExp(_FilterInvalids):
def test_logaddexp_values(self):
x = [1, 2, 3, 4, 5]
y = [5, 4, 3, 2, 1]
z = [6, 6, 6, 6, 6]
for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]):
xf = np.log(np.array(x, dtype=dt))
yf = np.log(np.array(y, dtype=dt))
zf = np.log(np.array(z, dtype=dt))
assert_almost_equal(np.logaddexp(xf, yf), zf, decimal=dec_)
def test_logaddexp_range(self):
x = [1000000, -1000000, 1000200, -1000200]
y = [1000200, -1000200, 1000000, -1000000]
z = [1000200, -1000000, 1000200, -1000000]
for dt in ['f', 'd', 'g']:
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
assert_almost_equal(np.logaddexp(logxf, logyf), logzf)
def test_inf(self):
inf = np.inf
x = [inf, -inf, inf, -inf, inf, 1, -inf, 1]
y = [inf, inf, -inf, -inf, 1, inf, 1, -inf]
z = [inf, inf, inf, -inf, inf, inf, 1, 1]
with np.errstate(invalid='raise'):
for dt in ['f', 'd', 'g']:
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
assert_equal(np.logaddexp(logxf, logyf), logzf)
def test_nan(self):
assert_(np.isnan(np.logaddexp(np.nan, np.inf)))
assert_(np.isnan(np.logaddexp(np.inf, np.nan)))
assert_(np.isnan(np.logaddexp(np.nan, 0)))
assert_(np.isnan(np.logaddexp(0, np.nan)))
assert_(np.isnan(np.logaddexp(np.nan, np.nan)))
def test_reduce(self):
assert_equal(np.logaddexp.identity, -np.inf)
assert_equal(np.logaddexp.reduce([]), -np.inf)
class TestLog1p:
def test_log1p(self):
assert_almost_equal(ncu.log1p(0.2), ncu.log(1.2))
assert_almost_equal(ncu.log1p(1e-6), ncu.log(1+1e-6))
def test_special(self):
with np.errstate(invalid="ignore", divide="ignore"):
assert_equal(ncu.log1p(np.nan), np.nan)
assert_equal(ncu.log1p(np.inf), np.inf)
assert_equal(ncu.log1p(-1.), -np.inf)
assert_equal(ncu.log1p(-2.), np.nan)
assert_equal(ncu.log1p(-np.inf), np.nan)
class TestExpm1:
def test_expm1(self):
assert_almost_equal(ncu.expm1(0.2), ncu.exp(0.2)-1)
assert_almost_equal(ncu.expm1(1e-6), ncu.exp(1e-6)-1)
def test_special(self):
assert_equal(ncu.expm1(np.inf), np.inf)
assert_equal(ncu.expm1(0.), 0.)
assert_equal(ncu.expm1(-0.), -0.)
assert_equal(ncu.expm1(np.inf), np.inf)
assert_equal(ncu.expm1(-np.inf), -1.)
def test_complex(self):
x = np.asarray(1e-12)
assert_allclose(x, ncu.expm1(x))
x = x.astype(np.complex128)
assert_allclose(x, ncu.expm1(x))
class TestHypot:
def test_simple(self):
assert_almost_equal(ncu.hypot(1, 1), ncu.sqrt(2))
assert_almost_equal(ncu.hypot(0, 0), 0)
def test_reduce(self):
assert_almost_equal(ncu.hypot.reduce([3.0, 4.0]), 5.0)
assert_almost_equal(ncu.hypot.reduce([3.0, 4.0, 0]), 5.0)
assert_almost_equal(ncu.hypot.reduce([9.0, 12.0, 20.0]), 25.0)
assert_equal(ncu.hypot.reduce([]), 0.0)
def assert_hypot_isnan(x, y):
with np.errstate(invalid='ignore'):
assert_(np.isnan(ncu.hypot(x, y)),
"hypot(%s, %s) is %s, not nan" % (x, y, ncu.hypot(x, y)))
def assert_hypot_isinf(x, y):
with np.errstate(invalid='ignore'):
assert_(np.isinf(ncu.hypot(x, y)),
"hypot(%s, %s) is %s, not inf" % (x, y, ncu.hypot(x, y)))
class TestHypotSpecialValues:
def test_nan_outputs(self):
assert_hypot_isnan(np.nan, np.nan)
assert_hypot_isnan(np.nan, 1)
def test_nan_outputs2(self):
assert_hypot_isinf(np.nan, np.inf)
assert_hypot_isinf(np.inf, np.nan)
assert_hypot_isinf(np.inf, 0)
assert_hypot_isinf(0, np.inf)
assert_hypot_isinf(np.inf, np.inf)
assert_hypot_isinf(np.inf, 23.0)
def test_no_fpe(self):
assert_no_warnings(ncu.hypot, np.inf, 0)
def assert_arctan2_isnan(x, y):
assert_(np.isnan(ncu.arctan2(x, y)), "arctan(%s, %s) is %s, not nan" % (x, y, ncu.arctan2(x, y)))
def assert_arctan2_ispinf(x, y):
assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) > 0), "arctan(%s, %s) is %s, not +inf" % (x, y, ncu.arctan2(x, y)))
def assert_arctan2_isninf(x, y):
assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) < 0), "arctan(%s, %s) is %s, not -inf" % (x, y, ncu.arctan2(x, y)))
def assert_arctan2_ispzero(x, y):
assert_((ncu.arctan2(x, y) == 0 and not np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not +0" % (x, y, ncu.arctan2(x, y)))
def assert_arctan2_isnzero(x, y):
assert_((ncu.arctan2(x, y) == 0 and np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not -0" % (x, y, ncu.arctan2(x, y)))
class TestArctan2SpecialValues:
def test_one_one(self):
# atan2(1, 1) returns pi/4.
assert_almost_equal(ncu.arctan2(1, 1), 0.25 * np.pi)
assert_almost_equal(ncu.arctan2(-1, 1), -0.25 * np.pi)
assert_almost_equal(ncu.arctan2(1, -1), 0.75 * np.pi)
def test_zero_nzero(self):
# atan2(+-0, -0) returns +-pi.
assert_almost_equal(ncu.arctan2(np.PZERO, np.NZERO), np.pi)
assert_almost_equal(ncu.arctan2(np.NZERO, np.NZERO), -np.pi)
def test_zero_pzero(self):
# atan2(+-0, +0) returns +-0.
assert_arctan2_ispzero(np.PZERO, np.PZERO)
assert_arctan2_isnzero(np.NZERO, np.PZERO)
def test_zero_negative(self):
# atan2(+-0, x) returns +-pi for x < 0.
assert_almost_equal(ncu.arctan2(np.PZERO, -1), np.pi)
assert_almost_equal(ncu.arctan2(np.NZERO, -1), -np.pi)
def test_zero_positive(self):
# atan2(+-0, x) returns +-0 for x > 0.
assert_arctan2_ispzero(np.PZERO, 1)
assert_arctan2_isnzero(np.NZERO, 1)
def test_positive_zero(self):
# atan2(y, +-0) returns +pi/2 for y > 0.
assert_almost_equal(ncu.arctan2(1, np.PZERO), 0.5 * np.pi)
assert_almost_equal(ncu.arctan2(1, np.NZERO), 0.5 * np.pi)
def test_negative_zero(self):
# atan2(y, +-0) returns -pi/2 for y < 0.
assert_almost_equal(ncu.arctan2(-1, np.PZERO), -0.5 * np.pi)
assert_almost_equal(ncu.arctan2(-1, np.NZERO), -0.5 * np.pi)
def test_any_ninf(self):
# atan2(+-y, -infinity) returns +-pi for finite y > 0.
assert_almost_equal(ncu.arctan2(1, np.NINF), np.pi)
assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi)
def test_any_pinf(self):
# atan2(+-y, +infinity) returns +-0 for finite y > 0.
assert_arctan2_ispzero(1, np.inf)
assert_arctan2_isnzero(-1, np.inf)
def test_inf_any(self):
# atan2(+-infinity, x) returns +-pi/2 for finite x.
assert_almost_equal(ncu.arctan2( np.inf, 1), 0.5 * np.pi)
assert_almost_equal(ncu.arctan2(-np.inf, 1), -0.5 * np.pi)
def test_inf_ninf(self):
# atan2(+-infinity, -infinity) returns +-3*pi/4.
assert_almost_equal(ncu.arctan2( np.inf, -np.inf), 0.75 * np.pi)
assert_almost_equal(ncu.arctan2(-np.inf, -np.inf), -0.75 * np.pi)
def test_inf_pinf(self):
# atan2(+-infinity, +infinity) returns +-pi/4.
assert_almost_equal(ncu.arctan2( np.inf, np.inf), 0.25 * np.pi)
assert_almost_equal(ncu.arctan2(-np.inf, np.inf), -0.25 * np.pi)
def test_nan_any(self):
# atan2(nan, x) returns nan for any x, including inf
assert_arctan2_isnan(np.nan, np.inf)
assert_arctan2_isnan(np.inf, np.nan)
assert_arctan2_isnan(np.nan, np.nan)
class TestLdexp:
def _check_ldexp(self, tp):
assert_almost_equal(ncu.ldexp(np.array(2., np.float32),
np.array(3, tp)), 16.)
assert_almost_equal(ncu.ldexp(np.array(2., np.float64),
np.array(3, tp)), 16.)
assert_almost_equal(ncu.ldexp(np.array(2., np.longdouble),
np.array(3, tp)), 16.)
def test_ldexp(self):
# The default Python int type should work
assert_almost_equal(ncu.ldexp(2., 3), 16.)
# The following int types should all be accepted
self._check_ldexp(np.int8)
self._check_ldexp(np.int16)
self._check_ldexp(np.int32)
self._check_ldexp('i')
self._check_ldexp('l')
def test_ldexp_overflow(self):
# silence warning emitted on overflow
with np.errstate(over="ignore"):
imax = np.iinfo(np.dtype('l')).max
imin = np.iinfo(np.dtype('l')).min
assert_equal(ncu.ldexp(2., imax), np.inf)
assert_equal(ncu.ldexp(2., imin), 0)
class TestMaximum(_FilterInvalids):
def test_reduce(self):
dflt = np.typecodes['AllFloat']
dint = np.typecodes['AllInteger']
seq1 = np.arange(11)
seq2 = seq1[::-1]
func = np.maximum.reduce
for dt in dint:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 10)
assert_equal(func(tmp2), 10)
for dt in dflt:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 10)
assert_equal(func(tmp2), 10)
tmp1[::2] = np.nan
tmp2[::2] = np.nan
assert_equal(func(tmp1), np.nan)
assert_equal(func(tmp2), np.nan)
def test_reduce_complex(self):
assert_equal(np.maximum.reduce([1, 2j]), 1)
assert_equal(np.maximum.reduce([1+3j, 2j]), 1+3j)
def test_float_nans(self):
nan = np.nan
arg1 = np.array([0, nan, nan])
arg2 = np.array([nan, 0, nan])
out = np.array([nan, nan, nan])
assert_equal(np.maximum(arg1, arg2), out)
def test_object_nans(self):
# Multiple checks to give this a chance to
# fail if cmp is used instead of rich compare.
# Failure cannot be guaranteed.
for i in range(1):
x = np.array(float('nan'), object)
y = 1.0
z = np.array(float('nan'), object)
assert_(np.maximum(x, y) == 1.0)
assert_(np.maximum(z, y) == 1.0)
def test_complex_nans(self):
nan = np.nan
for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
arg1 = np.array([0, cnan, cnan], dtype=complex)
arg2 = np.array([cnan, 0, cnan], dtype=complex)
out = np.array([nan, nan, nan], dtype=complex)
assert_equal(np.maximum(arg1, arg2), out)
def test_object_array(self):
arg1 = np.arange(5, dtype=object)
arg2 = arg1 + 1
assert_equal(np.maximum(arg1, arg2), arg2)
def test_strided_array(self):
arr1 = np.array([-4.0, 1.0, 10.0, 0.0, np.nan, -np.nan, np.inf, -np.inf])
arr2 = np.array([-2.0,-1.0, np.nan, 1.0, 0.0, np.nan, 1.0, -3.0])
maxtrue = np.array([-2.0, 1.0, np.nan, 1.0, np.nan, np.nan, np.inf, -3.0])
out = np.ones(8)
out_maxtrue = np.array([-2.0, 1.0, 1.0, 10.0, 1.0, 1.0, np.nan, 1.0])
assert_equal(np.maximum(arr1,arr2), maxtrue)
assert_equal(np.maximum(arr1[::2],arr2[::2]), maxtrue[::2])
assert_equal(np.maximum(arr1[:4:], arr2[::2]), np.array([-2.0, np.nan, 10.0, 1.0]))
assert_equal(np.maximum(arr1[::3], arr2[:3:]), np.array([-2.0, 0.0, np.nan]))
assert_equal(np.maximum(arr1[:6:2], arr2[::3], out=out[::3]), np.array([-2.0, 10., np.nan]))
assert_equal(out, out_maxtrue)
def test_precision(self):
dtypes = [np.float16, np.float32, np.float64, np.longdouble]
for dt in dtypes:
dtmin = np.finfo(dt).min
dtmax = np.finfo(dt).max
d1 = dt(0.1)
d1_next = np.nextafter(d1, np.inf)
test_cases = [
# v1 v2 expected
(dtmin, -np.inf, dtmin),
(dtmax, -np.inf, dtmax),
(d1, d1_next, d1_next),
(dtmax, np.nan, np.nan),
]
for v1, v2, expected in test_cases:
assert_equal(np.maximum([v1], [v2]), [expected])
assert_equal(np.maximum.reduce([v1, v2]), expected)
class TestMinimum(_FilterInvalids):
def test_reduce(self):
dflt = np.typecodes['AllFloat']
dint = np.typecodes['AllInteger']
seq1 = np.arange(11)
seq2 = seq1[::-1]
func = np.minimum.reduce
for dt in dint:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 0)
assert_equal(func(tmp2), 0)
for dt in dflt:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 0)
assert_equal(func(tmp2), 0)
tmp1[::2] = np.nan
tmp2[::2] = np.nan
assert_equal(func(tmp1), np.nan)
assert_equal(func(tmp2), np.nan)
def test_reduce_complex(self):
assert_equal(np.minimum.reduce([1, 2j]), 2j)
assert_equal(np.minimum.reduce([1+3j, 2j]), 2j)
def test_float_nans(self):
nan = np.nan
arg1 = np.array([0, nan, nan])
arg2 = np.array([nan, 0, nan])
out = np.array([nan, nan, nan])
assert_equal(np.minimum(arg1, arg2), out)
def test_object_nans(self):
# Multiple checks to give this a chance to
# fail if cmp is used instead of rich compare.
# Failure cannot be guaranteed.
for i in range(1):
x = np.array(float('nan'), object)
y = 1.0
z = np.array(float('nan'), object)
assert_(np.minimum(x, y) == 1.0)
assert_(np.minimum(z, y) == 1.0)
def test_complex_nans(self):
nan = np.nan
for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
arg1 = np.array([0, cnan, cnan], dtype=complex)
arg2 = np.array([cnan, 0, cnan], dtype=complex)
out = np.array([nan, nan, nan], dtype=complex)
assert_equal(np.minimum(arg1, arg2), out)
def test_object_array(self):
arg1 = np.arange(5, dtype=object)
arg2 = arg1 + 1
assert_equal(np.minimum(arg1, arg2), arg1)
def test_strided_array(self):
arr1 = np.array([-4.0, 1.0, 10.0, 0.0, np.nan, -np.nan, np.inf, -np.inf])
arr2 = np.array([-2.0,-1.0, np.nan, 1.0, 0.0, np.nan, 1.0, -3.0])
mintrue = np.array([-4.0, -1.0, np.nan, 0.0, np.nan, np.nan, 1.0, -np.inf])
out = np.ones(8)
out_mintrue = np.array([-4.0, 1.0, 1.0, 1.0, 1.0, 1.0, np.nan, 1.0])
assert_equal(np.minimum(arr1,arr2), mintrue)
assert_equal(np.minimum(arr1[::2],arr2[::2]), mintrue[::2])
assert_equal(np.minimum(arr1[:4:], arr2[::2]), np.array([-4.0, np.nan, 0.0, 0.0]))
assert_equal(np.minimum(arr1[::3], arr2[:3:]), np.array([-4.0, -1.0, np.nan]))
assert_equal(np.minimum(arr1[:6:2], arr2[::3], out=out[::3]), np.array([-4.0, 1.0, np.nan]))
assert_equal(out, out_mintrue)
def test_precision(self):
dtypes = [np.float16, np.float32, np.float64, np.longdouble]
for dt in dtypes:
dtmin = np.finfo(dt).min
dtmax = np.finfo(dt).max
d1 = dt(0.1)
d1_next = np.nextafter(d1, np.inf)
test_cases = [
# v1 v2 expected
(dtmin, np.inf, dtmin),
(dtmax, np.inf, dtmax),
(d1, d1_next, d1),
(dtmin, np.nan, np.nan),
]
for v1, v2, expected in test_cases:
assert_equal(np.minimum([v1], [v2]), [expected])
assert_equal(np.minimum.reduce([v1, v2]), expected)
class TestFmax(_FilterInvalids):
def test_reduce(self):
dflt = np.typecodes['AllFloat']
dint = np.typecodes['AllInteger']
seq1 = np.arange(11)
seq2 = seq1[::-1]
func = np.fmax.reduce
for dt in dint:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 10)
assert_equal(func(tmp2), 10)
for dt in dflt:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 10)
assert_equal(func(tmp2), 10)
tmp1[::2] = np.nan
tmp2[::2] = np.nan
assert_equal(func(tmp1), 9)
assert_equal(func(tmp2), 9)
def test_reduce_complex(self):
assert_equal(np.fmax.reduce([1, 2j]), 1)
assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j)
def test_float_nans(self):
nan = np.nan
arg1 = np.array([0, nan, nan])
arg2 = np.array([nan, 0, nan])
out = np.array([0, 0, nan])
assert_equal(np.fmax(arg1, arg2), out)
def test_complex_nans(self):
nan = np.nan
for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
arg1 = np.array([0, cnan, cnan], dtype=complex)
arg2 = np.array([cnan, 0, cnan], dtype=complex)
out = np.array([0, 0, nan], dtype=complex)
assert_equal(np.fmax(arg1, arg2), out)
def test_precision(self):
dtypes = [np.float16, np.float32, np.float64, np.longdouble]
for dt in dtypes:
dtmin = np.finfo(dt).min
dtmax = np.finfo(dt).max
d1 = dt(0.1)
d1_next = np.nextafter(d1, np.inf)
test_cases = [
# v1 v2 expected
(dtmin, -np.inf, dtmin),
(dtmax, -np.inf, dtmax),
(d1, d1_next, d1_next),
(dtmax, np.nan, dtmax),
]
for v1, v2, expected in test_cases:
assert_equal(np.fmax([v1], [v2]), [expected])
assert_equal(np.fmax.reduce([v1, v2]), expected)
class TestFmin(_FilterInvalids):
def test_reduce(self):
dflt = np.typecodes['AllFloat']
dint = np.typecodes['AllInteger']
seq1 = np.arange(11)
seq2 = seq1[::-1]
func = np.fmin.reduce
for dt in dint:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 0)
assert_equal(func(tmp2), 0)
for dt in dflt:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 0)
assert_equal(func(tmp2), 0)
tmp1[::2] = np.nan
tmp2[::2] = np.nan
assert_equal(func(tmp1), 1)
assert_equal(func(tmp2), 1)
def test_reduce_complex(self):
assert_equal(np.fmin.reduce([1, 2j]), 2j)
assert_equal(np.fmin.reduce([1+3j, 2j]), 2j)
def test_float_nans(self):
nan = np.nan
arg1 = np.array([0, nan, nan])
arg2 = np.array([nan, 0, nan])
out = np.array([0, 0, nan])
assert_equal(np.fmin(arg1, arg2), out)
def test_complex_nans(self):
nan = np.nan
for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
arg1 = np.array([0, cnan, cnan], dtype=complex)
arg2 = np.array([cnan, 0, cnan], dtype=complex)
out = np.array([0, 0, nan], dtype=complex)
assert_equal(np.fmin(arg1, arg2), out)
def test_precision(self):
dtypes = [np.float16, np.float32, np.float64, np.longdouble]
for dt in dtypes:
dtmin = np.finfo(dt).min
dtmax = np.finfo(dt).max
d1 = dt(0.1)
d1_next = np.nextafter(d1, np.inf)
test_cases = [
# v1 v2 expected
(dtmin, np.inf, dtmin),
(dtmax, np.inf, dtmax),
(d1, d1_next, d1),
(dtmin, np.nan, dtmin),
]
for v1, v2, expected in test_cases:
assert_equal(np.fmin([v1], [v2]), [expected])
assert_equal(np.fmin.reduce([v1, v2]), expected)
class TestBool:
def test_exceptions(self):
a = np.ones(1, dtype=np.bool_)
assert_raises(TypeError, np.negative, a)
assert_raises(TypeError, np.positive, a)
assert_raises(TypeError, np.subtract, a, a)
def test_truth_table_logical(self):
# 2, 3 and 4 serves as true values
input1 = [0, 0, 3, 2]
input2 = [0, 4, 0, 2]
typecodes = (np.typecodes['AllFloat']
+ np.typecodes['AllInteger']
+ '?') # boolean
for dtype in map(np.dtype, typecodes):
arg1 = np.asarray(input1, dtype=dtype)
arg2 = np.asarray(input2, dtype=dtype)
# OR
out = [False, True, True, True]
for func in (np.logical_or, np.maximum):
assert_equal(func(arg1, arg2).astype(bool), out)
# AND
out = [False, False, False, True]
for func in (np.logical_and, np.minimum):
assert_equal(func(arg1, arg2).astype(bool), out)
# XOR
out = [False, True, True, False]
for func in (np.logical_xor, np.not_equal):
assert_equal(func(arg1, arg2).astype(bool), out)
def test_truth_table_bitwise(self):
arg1 = [False, False, True, True]
arg2 = [False, True, False, True]
out = [False, True, True, True]
assert_equal(np.bitwise_or(arg1, arg2), out)
out = [False, False, False, True]
assert_equal(np.bitwise_and(arg1, arg2), out)
out = [False, True, True, False]
assert_equal(np.bitwise_xor(arg1, arg2), out)
def test_reduce(self):
none = np.array([0, 0, 0, 0], bool)
some = np.array([1, 0, 1, 1], bool)
every = np.array([1, 1, 1, 1], bool)
empty = np.array([], bool)
arrs = [none, some, every, empty]
for arr in arrs:
assert_equal(np.logical_and.reduce(arr), all(arr))
for arr in arrs:
assert_equal(np.logical_or.reduce(arr), any(arr))
for arr in arrs:
assert_equal(np.logical_xor.reduce(arr), arr.sum() % 2 == 1)
class TestBitwiseUFuncs:
bitwise_types = [np.dtype(c) for c in '?' + 'bBhHiIlLqQ' + 'O']
def test_values(self):
for dt in self.bitwise_types:
zeros = np.array([0], dtype=dt)
ones = np.array([-1]).astype(dt)
msg = "dt = '%s'" % dt.char
assert_equal(np.bitwise_not(zeros), ones, err_msg=msg)
assert_equal(np.bitwise_not(ones), zeros, err_msg=msg)
assert_equal(np.bitwise_or(zeros, zeros), zeros, err_msg=msg)
assert_equal(np.bitwise_or(zeros, ones), ones, err_msg=msg)
assert_equal(np.bitwise_or(ones, zeros), ones, err_msg=msg)
assert_equal(np.bitwise_or(ones, ones), ones, err_msg=msg)
assert_equal(np.bitwise_xor(zeros, zeros), zeros, err_msg=msg)
assert_equal(np.bitwise_xor(zeros, ones), ones, err_msg=msg)
assert_equal(np.bitwise_xor(ones, zeros), ones, err_msg=msg)
assert_equal(np.bitwise_xor(ones, ones), zeros, err_msg=msg)
assert_equal(np.bitwise_and(zeros, zeros), zeros, err_msg=msg)
assert_equal(np.bitwise_and(zeros, ones), zeros, err_msg=msg)
assert_equal(np.bitwise_and(ones, zeros), zeros, err_msg=msg)
assert_equal(np.bitwise_and(ones, ones), ones, err_msg=msg)
def test_types(self):
for dt in self.bitwise_types:
zeros = np.array([0], dtype=dt)
ones = np.array([-1]).astype(dt)
msg = "dt = '%s'" % dt.char
assert_(np.bitwise_not(zeros).dtype == dt, msg)
assert_(np.bitwise_or(zeros, zeros).dtype == dt, msg)
assert_(np.bitwise_xor(zeros, zeros).dtype == dt, msg)
assert_(np.bitwise_and(zeros, zeros).dtype == dt, msg)
def test_identity(self):
assert_(np.bitwise_or.identity == 0, 'bitwise_or')
assert_(np.bitwise_xor.identity == 0, 'bitwise_xor')
assert_(np.bitwise_and.identity == -1, 'bitwise_and')
def test_reduction(self):
binary_funcs = (np.bitwise_or, np.bitwise_xor, np.bitwise_and)
for dt in self.bitwise_types:
zeros = np.array([0], dtype=dt)
ones = np.array([-1]).astype(dt)
for f in binary_funcs:
msg = "dt: '%s', f: '%s'" % (dt, f)
assert_equal(f.reduce(zeros), zeros, err_msg=msg)
assert_equal(f.reduce(ones), ones, err_msg=msg)
# Test empty reduction, no object dtype
for dt in self.bitwise_types[:-1]:
# No object array types
empty = np.array([], dtype=dt)
for f in binary_funcs:
msg = "dt: '%s', f: '%s'" % (dt, f)
tgt = np.array(f.identity).astype(dt)
res = f.reduce(empty)
assert_equal(res, tgt, err_msg=msg)
assert_(res.dtype == tgt.dtype, msg)
# Empty object arrays use the identity. Note that the types may
# differ, the actual type used is determined by the assign_identity
# function and is not the same as the type returned by the identity
# method.
for f in binary_funcs:
msg = "dt: '%s'" % (f,)
empty = np.array([], dtype=object)
tgt = f.identity
res = f.reduce(empty)
assert_equal(res, tgt, err_msg=msg)
# Non-empty object arrays do not use the identity
for f in binary_funcs:
msg = "dt: '%s'" % (f,)
btype = np.array([True], dtype=object)
assert_(type(f.reduce(btype)) is bool, msg)
class TestInt:
def test_logical_not(self):
x = np.ones(10, dtype=np.int16)
o = np.ones(10 * 2, dtype=bool)
tgt = o.copy()
tgt[::2] = False
os = o[::2]
assert_array_equal(np.logical_not(x, out=os), False)
assert_array_equal(o, tgt)
class TestFloatingPoint:
def test_floating_point(self):
assert_equal(ncu.FLOATING_POINT_SUPPORT, 1)
class TestDegrees:
def test_degrees(self):
assert_almost_equal(ncu.degrees(np.pi), 180.0)
assert_almost_equal(ncu.degrees(-0.5*np.pi), -90.0)
class TestRadians:
def test_radians(self):
assert_almost_equal(ncu.radians(180.0), np.pi)
assert_almost_equal(ncu.radians(-90.0), -0.5*np.pi)
class TestHeavside:
def test_heaviside(self):
x = np.array([[-30.0, -0.1, 0.0, 0.2], [7.5, np.nan, np.inf, -np.inf]])
expectedhalf = np.array([[0.0, 0.0, 0.5, 1.0], [1.0, np.nan, 1.0, 0.0]])
expected1 = expectedhalf.copy()
expected1[0, 2] = 1
h = ncu.heaviside(x, 0.5)
assert_equal(h, expectedhalf)
h = ncu.heaviside(x, 1.0)
assert_equal(h, expected1)
x = x.astype(np.float32)
h = ncu.heaviside(x, np.float32(0.5))
assert_equal(h, expectedhalf.astype(np.float32))
h = ncu.heaviside(x, np.float32(1.0))
assert_equal(h, expected1.astype(np.float32))
class TestSign:
def test_sign(self):
a = np.array([np.inf, -np.inf, np.nan, 0.0, 3.0, -3.0])
out = np.zeros(a.shape)
tgt = np.array([1., -1., np.nan, 0.0, 1.0, -1.0])
with np.errstate(invalid='ignore'):
res = ncu.sign(a)
assert_equal(res, tgt)
res = ncu.sign(a, out)
assert_equal(res, tgt)
assert_equal(out, tgt)
def test_sign_dtype_object(self):
# In reference to github issue #6229
foo = np.array([-.1, 0, .1])
a = np.sign(foo.astype(object))
b = np.sign(foo)
assert_array_equal(a, b)
def test_sign_dtype_nan_object(self):
# In reference to github issue #6229
def test_nan():
foo = np.array([np.nan])
# FIXME: a not used
a = np.sign(foo.astype(object))
assert_raises(TypeError, test_nan)
class TestMinMax:
def test_minmax_blocked(self):
# simd tests on max/min, test all alignments, slow but important
# for 2 * vz + 2 * (vs - 1) + 1 (unrolled once)
for dt, sz in [(np.float32, 15), (np.float64, 7)]:
for out, inp, msg in _gen_alignment_data(dtype=dt, type='unary',
max_size=sz):
for i in range(inp.size):
inp[:] = np.arange(inp.size, dtype=dt)
inp[i] = np.nan
emsg = lambda: '%r\n%s' % (inp, msg)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning,
"invalid value encountered in reduce")
assert_(np.isnan(inp.max()), msg=emsg)
assert_(np.isnan(inp.min()), msg=emsg)
inp[i] = 1e10
assert_equal(inp.max(), 1e10, err_msg=msg)
inp[i] = -1e10
assert_equal(inp.min(), -1e10, err_msg=msg)
def test_lower_align(self):
# check data that is not aligned to element size
# i.e doubles are aligned to 4 bytes on i386
d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
assert_equal(d.max(), d[0])
assert_equal(d.min(), d[0])
def test_reduce_reorder(self):
# gh 10370, 11029 Some compilers reorder the call to npy_getfloatstatus
# and put it before the call to an intrisic function that causes
# invalid status to be set. Also make sure warnings are not emitted
for n in (2, 4, 8, 16, 32):
for dt in (np.float32, np.float16, np.complex64):
for r in np.diagflat(np.array([np.nan] * n, dtype=dt)):
assert_equal(np.min(r), np.nan)
def test_minimize_no_warns(self):
a = np.minimum(np.nan, 1)
assert_equal(a, np.nan)
class TestAbsoluteNegative:
def test_abs_neg_blocked(self):
# simd tests on abs, test all alignments for vz + 2 * (vs - 1) + 1
for dt, sz in [(np.float32, 11), (np.float64, 5)]:
for out, inp, msg in _gen_alignment_data(dtype=dt, type='unary',
max_size=sz):
tgt = [ncu.absolute(i) for i in inp]
np.absolute(inp, out=out)
assert_equal(out, tgt, err_msg=msg)
assert_((out >= 0).all())
tgt = [-1*(i) for i in inp]
np.negative(inp, out=out)
assert_equal(out, tgt, err_msg=msg)
for v in [np.nan, -np.inf, np.inf]:
for i in range(inp.size):
d = np.arange(inp.size, dtype=dt)
inp[:] = -d
inp[i] = v
d[i] = -v if v == -np.inf else v
assert_array_equal(np.abs(inp), d, err_msg=msg)
np.abs(inp, out=out)
assert_array_equal(out, d, err_msg=msg)
assert_array_equal(-inp, -1*inp, err_msg=msg)
d = -1 * inp
np.negative(inp, out=out)
assert_array_equal(out, d, err_msg=msg)
def test_lower_align(self):
# check data that is not aligned to element size
# i.e doubles are aligned to 4 bytes on i386
d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
assert_equal(np.abs(d), d)
assert_equal(np.negative(d), -d)
np.negative(d, out=d)
np.negative(np.ones_like(d), out=d)
np.abs(d, out=d)
np.abs(np.ones_like(d), out=d)
@pytest.mark.parametrize("dtype", ['d', 'f', 'int32', 'int64'])
@pytest.mark.parametrize("big", [True, False])
def test_noncontiguous(self, dtype, big):
data = np.array([-1.0, 1.0, -0.0, 0.0, 2.2251e-308, -2.5, 2.5, -6,
6, -2.2251e-308, -8, 10], dtype=dtype)
expect = np.array([1.0, -1.0, 0.0, -0.0, -2.2251e-308, 2.5, -2.5, 6,
-6, 2.2251e-308, 8, -10], dtype=dtype)
if big:
data = np.repeat(data, 10)
expect = np.repeat(expect, 10)
out = np.ndarray(data.shape, dtype=dtype)
ncontig_in = data[1::2]
ncontig_out = out[1::2]
contig_in = np.array(ncontig_in)
# contig in, contig out
assert_array_equal(np.negative(contig_in), expect[1::2])
# contig in, ncontig out
assert_array_equal(np.negative(contig_in, out=ncontig_out),
expect[1::2])
# ncontig in, contig out
assert_array_equal(np.negative(ncontig_in), expect[1::2])
# ncontig in, ncontig out
assert_array_equal(np.negative(ncontig_in, out=ncontig_out),
expect[1::2])
# contig in, contig out, nd stride
data_split = np.array(np.array_split(data, 2))
expect_split = np.array(np.array_split(expect, 2))
assert_equal(np.negative(data_split), expect_split)
class TestPositive:
def test_valid(self):
valid_dtypes = [int, float, complex, object]
for dtype in valid_dtypes:
x = np.arange(5, dtype=dtype)
result = np.positive(x)
assert_equal(x, result, err_msg=str(dtype))
def test_invalid(self):
with assert_raises(TypeError):
np.positive(True)
with assert_raises(TypeError):
np.positive(np.datetime64('2000-01-01'))
with assert_raises(TypeError):
np.positive(np.array(['foo'], dtype=str))
with assert_raises(TypeError):
np.positive(np.array(['bar'], dtype=object))
class TestSpecialMethods:
def test_wrap(self):
class with_wrap:
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr, context):
r = with_wrap()
r.arr = arr
r.context = context
return r
a = with_wrap()
x = ncu.minimum(a, a)
assert_equal(x.arr, np.zeros(1))
func, args, i = x.context
assert_(func is ncu.minimum)
assert_equal(len(args), 2)
assert_equal(args[0], a)
assert_equal(args[1], a)
assert_equal(i, 0)
def test_wrap_and_prepare_out(self):
# Calling convention for out should not affect how special methods are
# called
class StoreArrayPrepareWrap(np.ndarray):
_wrap_args = None
_prepare_args = None
def __new__(cls):
return np.zeros(()).view(cls)
def __array_wrap__(self, obj, context):
self._wrap_args = context[1]
return obj
def __array_prepare__(self, obj, context):
self._prepare_args = context[1]
return obj
@property
def args(self):
# We need to ensure these are fetched at the same time, before
# any other ufuncs are called by the assertions
return (self._prepare_args, self._wrap_args)
def __repr__(self):
return "a" # for short test output
def do_test(f_call, f_expected):
a = StoreArrayPrepareWrap()
f_call(a)
p, w = a.args
expected = f_expected(a)
try:
assert_equal(p, expected)
assert_equal(w, expected)
except AssertionError as e:
# assert_equal produces truly useless error messages
raise AssertionError("\n".join([
"Bad arguments passed in ufunc call",
" expected: {}".format(expected),
" __array_prepare__ got: {}".format(p),
" __array_wrap__ got: {}".format(w)
]))
# method not on the out argument
do_test(lambda a: np.add(a, 0), lambda a: (a, 0))
do_test(lambda a: np.add(a, 0, None), lambda a: (a, 0))
do_test(lambda a: np.add(a, 0, out=None), lambda a: (a, 0))
do_test(lambda a: np.add(a, 0, out=(None,)), lambda a: (a, 0))
# method on the out argument
do_test(lambda a: np.add(0, 0, a), lambda a: (0, 0, a))
do_test(lambda a: np.add(0, 0, out=a), lambda a: (0, 0, a))
do_test(lambda a: np.add(0, 0, out=(a,)), lambda a: (0, 0, a))
# Also check the where mask handling:
do_test(lambda a: np.add(a, 0, where=False), lambda a: (a, 0))
do_test(lambda a: np.add(0, 0, a, where=False), lambda a: (0, 0, a))
def test_wrap_with_iterable(self):
# test fix for bug #1026:
class with_wrap(np.ndarray):
__array_priority__ = 10
def __new__(cls):
return np.asarray(1).view(cls).copy()
def __array_wrap__(self, arr, context):
return arr.view(type(self))
a = with_wrap()
x = ncu.multiply(a, (1, 2, 3))
assert_(isinstance(x, with_wrap))
assert_array_equal(x, np.array((1, 2, 3)))
def test_priority_with_scalar(self):
# test fix for bug #826:
class A(np.ndarray):
__array_priority__ = 10
def __new__(cls):
return np.asarray(1.0, 'float64').view(cls).copy()
a = A()
x = np.float64(1)*a
assert_(isinstance(x, A))
assert_array_equal(x, np.array(1))
def test_old_wrap(self):
class with_wrap:
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr):
r = with_wrap()
r.arr = arr
return r
a = with_wrap()
x = ncu.minimum(a, a)
assert_equal(x.arr, np.zeros(1))
def test_priority(self):
class A:
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr, context):
r = type(self)()
r.arr = arr
r.context = context
return r
class B(A):
__array_priority__ = 20.
class C(A):
__array_priority__ = 40.
x = np.zeros(1)
a = A()
b = B()
c = C()
f = ncu.minimum
assert_(type(f(x, x)) is np.ndarray)
assert_(type(f(x, a)) is A)
assert_(type(f(x, b)) is B)
assert_(type(f(x, c)) is C)
assert_(type(f(a, x)) is A)
assert_(type(f(b, x)) is B)
assert_(type(f(c, x)) is C)
assert_(type(f(a, a)) is A)
assert_(type(f(a, b)) is B)
assert_(type(f(b, a)) is B)
assert_(type(f(b, b)) is B)
assert_(type(f(b, c)) is C)
assert_(type(f(c, b)) is C)
assert_(type(f(c, c)) is C)
assert_(type(ncu.exp(a) is A))
assert_(type(ncu.exp(b) is B))
assert_(type(ncu.exp(c) is C))
def test_failing_wrap(self):
class A:
def __array__(self):
return np.zeros(2)
def __array_wrap__(self, arr, context):
raise RuntimeError
a = A()
assert_raises(RuntimeError, ncu.maximum, a, a)
assert_raises(RuntimeError, ncu.maximum.reduce, a)
def test_failing_out_wrap(self):
singleton = np.array([1.0])
class Ok(np.ndarray):
def __array_wrap__(self, obj):
return singleton
class Bad(np.ndarray):
def __array_wrap__(self, obj):
raise RuntimeError
ok = np.empty(1).view(Ok)
bad = np.empty(1).view(Bad)
# double-free (segfault) of "ok" if "bad" raises an exception
for i in range(10):
assert_raises(RuntimeError, ncu.frexp, 1, ok, bad)
def test_none_wrap(self):
# Tests that issue #8507 is resolved. Previously, this would segfault
class A:
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr, context=None):
return None
a = A()
assert_equal(ncu.maximum(a, a), None)
def test_default_prepare(self):
class with_wrap:
__array_priority__ = 10
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr, context):
return arr
a = with_wrap()
x = ncu.minimum(a, a)
assert_equal(x, np.zeros(1))
assert_equal(type(x), np.ndarray)
@pytest.mark.parametrize("use_where", [True, False])
def test_prepare(self, use_where):
class with_prepare(np.ndarray):
__array_priority__ = 10
def __array_prepare__(self, arr, context):
# make sure we can return a new
return np.array(arr).view(type=with_prepare)
a = np.array(1).view(type=with_prepare)
if use_where:
x = np.add(a, a, where=np.array(True))
else:
x = np.add(a, a)
assert_equal(x, np.array(2))
assert_equal(type(x), with_prepare)
@pytest.mark.parametrize("use_where", [True, False])
def test_prepare_out(self, use_where):
class with_prepare(np.ndarray):
__array_priority__ = 10
def __array_prepare__(self, arr, context):
return np.array(arr).view(type=with_prepare)
a = np.array([1]).view(type=with_prepare)
if use_where:
x = np.add(a, a, a, where=[True])
else:
x = np.add(a, a, a)
# Returned array is new, because of the strange
# __array_prepare__ above
assert_(not np.shares_memory(x, a))
assert_equal(x, np.array([2]))
assert_equal(type(x), with_prepare)
def test_failing_prepare(self):
class A:
def __array__(self):
return np.zeros(1)
def __array_prepare__(self, arr, context=None):
raise RuntimeError
a = A()
assert_raises(RuntimeError, ncu.maximum, a, a)
assert_raises(RuntimeError, ncu.maximum, a, a, where=False)
def test_array_too_many_args(self):
class A:
def __array__(self, dtype, context):
return np.zeros(1)
a = A()
assert_raises_regex(TypeError, '2 required positional', np.sum, a)
def test_ufunc_override(self):
# check override works even with instance with high priority.
class A:
def __array_ufunc__(self, func, method, *inputs, **kwargs):
return self, func, method, inputs, kwargs
class MyNDArray(np.ndarray):
__array_priority__ = 100
a = A()
b = np.array([1]).view(MyNDArray)
res0 = np.multiply(a, b)
res1 = np.multiply(b, b, out=a)
# self
assert_equal(res0[0], a)
assert_equal(res1[0], a)
assert_equal(res0[1], np.multiply)
assert_equal(res1[1], np.multiply)
assert_equal(res0[2], '__call__')
assert_equal(res1[2], '__call__')
assert_equal(res0[3], (a, b))
assert_equal(res1[3], (b, b))
assert_equal(res0[4], {})
assert_equal(res1[4], {'out': (a,)})
def test_ufunc_override_mro(self):
# Some multi arg functions for testing.
def tres_mul(a, b, c):
return a * b * c
def quatro_mul(a, b, c, d):
return a * b * c * d
# Make these into ufuncs.
three_mul_ufunc = np.frompyfunc(tres_mul, 3, 1)
four_mul_ufunc = np.frompyfunc(quatro_mul, 4, 1)
class A:
def __array_ufunc__(self, func, method, *inputs, **kwargs):
return "A"
class ASub(A):
def __array_ufunc__(self, func, method, *inputs, **kwargs):
return "ASub"
class B:
def __array_ufunc__(self, func, method, *inputs, **kwargs):
return "B"
class C:
def __init__(self):
self.count = 0
def __array_ufunc__(self, func, method, *inputs, **kwargs):
self.count += 1
return NotImplemented
class CSub(C):
def __array_ufunc__(self, func, method, *inputs, **kwargs):
self.count += 1
return NotImplemented
a = A()
a_sub = ASub()
b = B()
c = C()
# Standard
res = np.multiply(a, a_sub)
assert_equal(res, "ASub")
res = np.multiply(a_sub, b)
assert_equal(res, "ASub")
# With 1 NotImplemented
res = np.multiply(c, a)
assert_equal(res, "A")
assert_equal(c.count, 1)
# Check our counter works, so we can trust tests below.
res = np.multiply(c, a)
assert_equal(c.count, 2)
# Both NotImplemented.
c = C()
c_sub = CSub()
assert_raises(TypeError, np.multiply, c, c_sub)
assert_equal(c.count, 1)
assert_equal(c_sub.count, 1)
c.count = c_sub.count = 0
assert_raises(TypeError, np.multiply, c_sub, c)
assert_equal(c.count, 1)
assert_equal(c_sub.count, 1)
c.count = 0
assert_raises(TypeError, np.multiply, c, c)
assert_equal(c.count, 1)
c.count = 0
assert_raises(TypeError, np.multiply, 2, c)
assert_equal(c.count, 1)
# Ternary testing.
assert_equal(three_mul_ufunc(a, 1, 2), "A")
assert_equal(three_mul_ufunc(1, a, 2), "A")
assert_equal(three_mul_ufunc(1, 2, a), "A")
assert_equal(three_mul_ufunc(a, a, 6), "A")
assert_equal(three_mul_ufunc(a, 2, a), "A")
assert_equal(three_mul_ufunc(a, 2, b), "A")
assert_equal(three_mul_ufunc(a, 2, a_sub), "ASub")
assert_equal(three_mul_ufunc(a, a_sub, 3), "ASub")
c.count = 0
assert_equal(three_mul_ufunc(c, a_sub, 3), "ASub")
assert_equal(c.count, 1)
c.count = 0
assert_equal(three_mul_ufunc(1, a_sub, c), "ASub")
assert_equal(c.count, 0)
c.count = 0
assert_equal(three_mul_ufunc(a, b, c), "A")
assert_equal(c.count, 0)
c_sub.count = 0
assert_equal(three_mul_ufunc(a, b, c_sub), "A")
assert_equal(c_sub.count, 0)
assert_equal(three_mul_ufunc(1, 2, b), "B")
assert_raises(TypeError, three_mul_ufunc, 1, 2, c)
assert_raises(TypeError, three_mul_ufunc, c_sub, 2, c)
assert_raises(TypeError, three_mul_ufunc, c_sub, 2, 3)
# Quaternary testing.
assert_equal(four_mul_ufunc(a, 1, 2, 3), "A")
assert_equal(four_mul_ufunc(1, a, 2, 3), "A")
assert_equal(four_mul_ufunc(1, 1, a, 3), "A")
assert_equal(four_mul_ufunc(1, 1, 2, a), "A")
assert_equal(four_mul_ufunc(a, b, 2, 3), "A")
assert_equal(four_mul_ufunc(1, a, 2, b), "A")
assert_equal(four_mul_ufunc(b, 1, a, 3), "B")
assert_equal(four_mul_ufunc(a_sub, 1, 2, a), "ASub")
assert_equal(four_mul_ufunc(a, 1, 2, a_sub), "ASub")
c = C()
c_sub = CSub()
assert_raises(TypeError, four_mul_ufunc, 1, 2, 3, c)
assert_equal(c.count, 1)
c.count = 0
assert_raises(TypeError, four_mul_ufunc, 1, 2, c_sub, c)
assert_equal(c_sub.count, 1)
assert_equal(c.count, 1)
c2 = C()
c.count = c_sub.count = 0
assert_raises(TypeError, four_mul_ufunc, 1, c, c_sub, c2)
assert_equal(c_sub.count, 1)
assert_equal(c.count, 1)
assert_equal(c2.count, 0)
c.count = c2.count = c_sub.count = 0
assert_raises(TypeError, four_mul_ufunc, c2, c, c_sub, c)
assert_equal(c_sub.count, 1)
assert_equal(c.count, 0)
assert_equal(c2.count, 1)
def test_ufunc_override_methods(self):
class A:
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
return self, ufunc, method, inputs, kwargs
# __call__
a = A()
with assert_raises(TypeError):
np.multiply.__call__(1, a, foo='bar', answer=42)
res = np.multiply.__call__(1, a, subok='bar', where=42)
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], '__call__')
assert_equal(res[3], (1, a))
assert_equal(res[4], {'subok': 'bar', 'where': 42})
# __call__, wrong args
assert_raises(TypeError, np.multiply, a)
assert_raises(TypeError, np.multiply, a, a, a, a)
assert_raises(TypeError, np.multiply, a, a, sig='a', signature='a')
assert_raises(TypeError, ncu_tests.inner1d, a, a, axis=0, axes=[0, 0])
# reduce, positional args
res = np.multiply.reduce(a, 'axis0', 'dtype0', 'out0', 'keep0')
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'reduce')
assert_equal(res[3], (a,))
assert_equal(res[4], {'dtype':'dtype0',
'out': ('out0',),
'keepdims': 'keep0',
'axis': 'axis0'})
# reduce, kwargs
res = np.multiply.reduce(a, axis='axis0', dtype='dtype0', out='out0',
keepdims='keep0', initial='init0',
where='where0')
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'reduce')
assert_equal(res[3], (a,))
assert_equal(res[4], {'dtype':'dtype0',
'out': ('out0',),
'keepdims': 'keep0',
'axis': 'axis0',
'initial': 'init0',
'where': 'where0'})
# reduce, output equal to None removed, but not other explicit ones,
# even if they are at their default value.
res = np.multiply.reduce(a, 0, None, None, False)
assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False})
res = np.multiply.reduce(a, out=None, axis=0, keepdims=True)
assert_equal(res[4], {'axis': 0, 'keepdims': True})
res = np.multiply.reduce(a, None, out=(None,), dtype=None)
assert_equal(res[4], {'axis': None, 'dtype': None})
res = np.multiply.reduce(a, 0, None, None, False, 2, True)
assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False,
'initial': 2, 'where': True})
# np._NoValue ignored for initial
res = np.multiply.reduce(a, 0, None, None, False,
np._NoValue, True)
assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False,
'where': True})
# None kept for initial, True for where.
res = np.multiply.reduce(a, 0, None, None, False, None, True)
assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False,
'initial': None, 'where': True})
# reduce, wrong args
assert_raises(ValueError, np.multiply.reduce, a, out=())
assert_raises(ValueError, np.multiply.reduce, a, out=('out0', 'out1'))
assert_raises(TypeError, np.multiply.reduce, a, 'axis0', axis='axis0')
# accumulate, pos args
res = np.multiply.accumulate(a, 'axis0', 'dtype0', 'out0')
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'accumulate')
assert_equal(res[3], (a,))
assert_equal(res[4], {'dtype':'dtype0',
'out': ('out0',),
'axis': 'axis0'})
# accumulate, kwargs
res = np.multiply.accumulate(a, axis='axis0', dtype='dtype0',
out='out0')
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'accumulate')
assert_equal(res[3], (a,))
assert_equal(res[4], {'dtype':'dtype0',
'out': ('out0',),
'axis': 'axis0'})
# accumulate, output equal to None removed.
res = np.multiply.accumulate(a, 0, None, None)
assert_equal(res[4], {'axis': 0, 'dtype': None})
res = np.multiply.accumulate(a, out=None, axis=0, dtype='dtype1')
assert_equal(res[4], {'axis': 0, 'dtype': 'dtype1'})
res = np.multiply.accumulate(a, None, out=(None,), dtype=None)
assert_equal(res[4], {'axis': None, 'dtype': None})
# accumulate, wrong args
assert_raises(ValueError, np.multiply.accumulate, a, out=())
assert_raises(ValueError, np.multiply.accumulate, a,
out=('out0', 'out1'))
assert_raises(TypeError, np.multiply.accumulate, a,
'axis0', axis='axis0')
# reduceat, pos args
res = np.multiply.reduceat(a, [4, 2], 'axis0', 'dtype0', 'out0')
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'reduceat')
assert_equal(res[3], (a, [4, 2]))
assert_equal(res[4], {'dtype':'dtype0',
'out': ('out0',),
'axis': 'axis0'})
# reduceat, kwargs
res = np.multiply.reduceat(a, [4, 2], axis='axis0', dtype='dtype0',
out='out0')
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'reduceat')
assert_equal(res[3], (a, [4, 2]))
assert_equal(res[4], {'dtype':'dtype0',
'out': ('out0',),
'axis': 'axis0'})
# reduceat, output equal to None removed.
res = np.multiply.reduceat(a, [4, 2], 0, None, None)
assert_equal(res[4], {'axis': 0, 'dtype': None})
res = np.multiply.reduceat(a, [4, 2], axis=None, out=None, dtype='dt')
assert_equal(res[4], {'axis': None, 'dtype': 'dt'})
res = np.multiply.reduceat(a, [4, 2], None, None, out=(None,))
assert_equal(res[4], {'axis': None, 'dtype': None})
# reduceat, wrong args
assert_raises(ValueError, np.multiply.reduce, a, [4, 2], out=())
assert_raises(ValueError, np.multiply.reduce, a, [4, 2],
out=('out0', 'out1'))
assert_raises(TypeError, np.multiply.reduce, a, [4, 2],
'axis0', axis='axis0')
# outer
res = np.multiply.outer(a, 42)
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'outer')
assert_equal(res[3], (a, 42))
assert_equal(res[4], {})
# outer, wrong args
assert_raises(TypeError, np.multiply.outer, a)
assert_raises(TypeError, np.multiply.outer, a, a, a, a)
assert_raises(TypeError, np.multiply.outer, a, a, sig='a', signature='a')
# at
res = np.multiply.at(a, [4, 2], 'b0')
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'at')
assert_equal(res[3], (a, [4, 2], 'b0'))
# at, wrong args
assert_raises(TypeError, np.multiply.at, a)
assert_raises(TypeError, np.multiply.at, a, a, a, a)
def test_ufunc_override_out(self):
class A:
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
return kwargs
class B:
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
return kwargs
a = A()
b = B()
res0 = np.multiply(a, b, 'out_arg')
res1 = np.multiply(a, b, out='out_arg')
res2 = np.multiply(2, b, 'out_arg')
res3 = np.multiply(3, b, out='out_arg')
res4 = np.multiply(a, 4, 'out_arg')
res5 = np.multiply(a, 5, out='out_arg')
assert_equal(res0['out'][0], 'out_arg')
assert_equal(res1['out'][0], 'out_arg')
assert_equal(res2['out'][0], 'out_arg')
assert_equal(res3['out'][0], 'out_arg')
assert_equal(res4['out'][0], 'out_arg')
assert_equal(res5['out'][0], 'out_arg')
# ufuncs with multiple output modf and frexp.
res6 = np.modf(a, 'out0', 'out1')
res7 = np.frexp(a, 'out0', 'out1')
assert_equal(res6['out'][0], 'out0')
assert_equal(res6['out'][1], 'out1')
assert_equal(res7['out'][0], 'out0')
assert_equal(res7['out'][1], 'out1')
# While we're at it, check that default output is never passed on.
assert_(np.sin(a, None) == {})
assert_(np.sin(a, out=None) == {})
assert_(np.sin(a, out=(None,)) == {})
assert_(np.modf(a, None) == {})
assert_(np.modf(a, None, None) == {})
assert_(np.modf(a, out=(None, None)) == {})
with assert_raises(TypeError):
# Out argument must be tuple, since there are multiple outputs.
np.modf(a, out=None)
# don't give positional and output argument, or too many arguments.
# wrong number of arguments in the tuple is an error too.
assert_raises(TypeError, np.multiply, a, b, 'one', out='two')
assert_raises(TypeError, np.multiply, a, b, 'one', 'two')
assert_raises(ValueError, np.multiply, a, b, out=('one', 'two'))
assert_raises(TypeError, np.multiply, a, out=())
assert_raises(TypeError, np.modf, a, 'one', out=('two', 'three'))
assert_raises(TypeError, np.modf, a, 'one', 'two', 'three')
assert_raises(ValueError, np.modf, a, out=('one', 'two', 'three'))
assert_raises(ValueError, np.modf, a, out=('one',))
def test_ufunc_override_where(self):
class OverriddenArrayOld(np.ndarray):
def _unwrap(self, objs):
cls = type(self)
result = []
for obj in objs:
if isinstance(obj, cls):
obj = np.array(obj)
elif type(obj) != np.ndarray:
return NotImplemented
result.append(obj)
return result
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
inputs = self._unwrap(inputs)
if inputs is NotImplemented:
return NotImplemented
kwargs = kwargs.copy()
if "out" in kwargs:
kwargs["out"] = self._unwrap(kwargs["out"])
if kwargs["out"] is NotImplemented:
return NotImplemented
r = super().__array_ufunc__(ufunc, method, *inputs, **kwargs)
if r is not NotImplemented:
r = r.view(type(self))
return r
class OverriddenArrayNew(OverriddenArrayOld):
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
kwargs = kwargs.copy()
if "where" in kwargs:
kwargs["where"] = self._unwrap((kwargs["where"], ))
if kwargs["where"] is NotImplemented:
return NotImplemented
else:
kwargs["where"] = kwargs["where"][0]
r = super().__array_ufunc__(ufunc, method, *inputs, **kwargs)
if r is not NotImplemented:
r = r.view(type(self))
return r
ufunc = np.negative
array = np.array([1, 2, 3])
where = np.array([True, False, True])
expected = ufunc(array, where=where)
with pytest.raises(TypeError):
ufunc(array, where=where.view(OverriddenArrayOld))
result_1 = ufunc(
array,
where=where.view(OverriddenArrayNew)
)
assert isinstance(result_1, OverriddenArrayNew)
assert np.all(np.array(result_1) == expected, where=where)
result_2 = ufunc(
array.view(OverriddenArrayNew),
where=where.view(OverriddenArrayNew)
)
assert isinstance(result_2, OverriddenArrayNew)
assert np.all(np.array(result_2) == expected, where=where)
def test_ufunc_override_exception(self):
class A:
def __array_ufunc__(self, *a, **kwargs):
raise ValueError("oops")
a = A()
assert_raises(ValueError, np.negative, 1, out=a)
assert_raises(ValueError, np.negative, a)
assert_raises(ValueError, np.divide, 1., a)
def test_ufunc_override_not_implemented(self):
class A:
def __array_ufunc__(self, *args, **kwargs):
return NotImplemented
msg = ("operand type(s) all returned NotImplemented from "
"__array_ufunc__(<ufunc 'negative'>, '__call__', <*>): 'A'")
with assert_raises_regex(TypeError, fnmatch.translate(msg)):
np.negative(A())
msg = ("operand type(s) all returned NotImplemented from "
"__array_ufunc__(<ufunc 'add'>, '__call__', <*>, <object *>, "
"out=(1,)): 'A', 'object', 'int'")
with assert_raises_regex(TypeError, fnmatch.translate(msg)):
np.add(A(), object(), out=1)
def test_ufunc_override_disabled(self):
class OptOut:
__array_ufunc__ = None
opt_out = OptOut()
# ufuncs always raise
msg = "operand 'OptOut' does not support ufuncs"
with assert_raises_regex(TypeError, msg):
np.add(opt_out, 1)
with assert_raises_regex(TypeError, msg):
np.add(1, opt_out)
with assert_raises_regex(TypeError, msg):
np.negative(opt_out)
# opt-outs still hold even when other arguments have pathological
# __array_ufunc__ implementations
class GreedyArray:
def __array_ufunc__(self, *args, **kwargs):
return self
greedy = GreedyArray()
assert_(np.negative(greedy) is greedy)
with assert_raises_regex(TypeError, msg):
np.add(greedy, opt_out)
with assert_raises_regex(TypeError, msg):
np.add(greedy, 1, out=opt_out)
def test_gufunc_override(self):
# gufunc are just ufunc instances, but follow a different path,
# so check __array_ufunc__ overrides them properly.
class A:
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
return self, ufunc, method, inputs, kwargs
inner1d = ncu_tests.inner1d
a = A()
res = inner1d(a, a)
assert_equal(res[0], a)
assert_equal(res[1], inner1d)
assert_equal(res[2], '__call__')
assert_equal(res[3], (a, a))
assert_equal(res[4], {})
res = inner1d(1, 1, out=a)
assert_equal(res[0], a)
assert_equal(res[1], inner1d)
assert_equal(res[2], '__call__')
assert_equal(res[3], (1, 1))
assert_equal(res[4], {'out': (a,)})
# wrong number of arguments in the tuple is an error too.
assert_raises(TypeError, inner1d, a, out='two')
assert_raises(TypeError, inner1d, a, a, 'one', out='two')
assert_raises(TypeError, inner1d, a, a, 'one', 'two')
assert_raises(ValueError, inner1d, a, a, out=('one', 'two'))
assert_raises(ValueError, inner1d, a, a, out=())
def test_ufunc_override_with_super(self):
# NOTE: this class is used in doc/source/user/basics.subclassing.rst
# if you make any changes here, do update it there too.
class A(np.ndarray):
def __array_ufunc__(self, ufunc, method, *inputs, out=None, **kwargs):
args = []
in_no = []
for i, input_ in enumerate(inputs):
if isinstance(input_, A):
in_no.append(i)
args.append(input_.view(np.ndarray))
else:
args.append(input_)
outputs = out
out_no = []
if outputs:
out_args = []
for j, output in enumerate(outputs):
if isinstance(output, A):
out_no.append(j)
out_args.append(output.view(np.ndarray))
else:
out_args.append(output)
kwargs['out'] = tuple(out_args)
else:
outputs = (None,) * ufunc.nout
info = {}
if in_no:
info['inputs'] = in_no
if out_no:
info['outputs'] = out_no
results = super().__array_ufunc__(ufunc, method,
*args, **kwargs)
if results is NotImplemented:
return NotImplemented
if method == 'at':
if isinstance(inputs[0], A):
inputs[0].info = info
return
if ufunc.nout == 1:
results = (results,)
results = tuple((np.asarray(result).view(A)
if output is None else output)
for result, output in zip(results, outputs))
if results and isinstance(results[0], A):
results[0].info = info
return results[0] if len(results) == 1 else results
class B:
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
if any(isinstance(input_, A) for input_ in inputs):
return "A!"
else:
return NotImplemented
d = np.arange(5.)
# 1 input, 1 output
a = np.arange(5.).view(A)
b = np.sin(a)
check = np.sin(d)
assert_(np.all(check == b))
assert_equal(b.info, {'inputs': [0]})
b = np.sin(d, out=(a,))
assert_(np.all(check == b))
assert_equal(b.info, {'outputs': [0]})
assert_(b is a)
a = np.arange(5.).view(A)
b = np.sin(a, out=a)
assert_(np.all(check == b))
assert_equal(b.info, {'inputs': [0], 'outputs': [0]})
# 1 input, 2 outputs
a = np.arange(5.).view(A)
b1, b2 = np.modf(a)
assert_equal(b1.info, {'inputs': [0]})
b1, b2 = np.modf(d, out=(None, a))
assert_(b2 is a)
assert_equal(b1.info, {'outputs': [1]})
a = np.arange(5.).view(A)
b = np.arange(5.).view(A)
c1, c2 = np.modf(a, out=(a, b))
assert_(c1 is a)
assert_(c2 is b)
assert_equal(c1.info, {'inputs': [0], 'outputs': [0, 1]})
# 2 input, 1 output
a = np.arange(5.).view(A)
b = np.arange(5.).view(A)
c = np.add(a, b, out=a)
assert_(c is a)
assert_equal(c.info, {'inputs': [0, 1], 'outputs': [0]})
# some tests with a non-ndarray subclass
a = np.arange(5.)
b = B()
assert_(a.__array_ufunc__(np.add, '__call__', a, b) is NotImplemented)
assert_(b.__array_ufunc__(np.add, '__call__', a, b) is NotImplemented)
assert_raises(TypeError, np.add, a, b)
a = a.view(A)
assert_(a.__array_ufunc__(np.add, '__call__', a, b) is NotImplemented)
assert_(b.__array_ufunc__(np.add, '__call__', a, b) == "A!")
assert_(np.add(a, b) == "A!")
# regression check for gh-9102 -- tests ufunc.reduce implicitly.
d = np.array([[1, 2, 3], [1, 2, 3]])
a = d.view(A)
c = a.any()
check = d.any()
assert_equal(c, check)
assert_(c.info, {'inputs': [0]})
c = a.max()
check = d.max()
assert_equal(c, check)
assert_(c.info, {'inputs': [0]})
b = np.array(0).view(A)
c = a.max(out=b)
assert_equal(c, check)
assert_(c is b)
assert_(c.info, {'inputs': [0], 'outputs': [0]})
check = a.max(axis=0)
b = np.zeros_like(check).view(A)
c = a.max(axis=0, out=b)
assert_equal(c, check)
assert_(c is b)
assert_(c.info, {'inputs': [0], 'outputs': [0]})
# simple explicit tests of reduce, accumulate, reduceat
check = np.add.reduce(d, axis=1)
c = np.add.reduce(a, axis=1)
assert_equal(c, check)
assert_(c.info, {'inputs': [0]})
b = np.zeros_like(c)
c = np.add.reduce(a, 1, None, b)
assert_equal(c, check)
assert_(c is b)
assert_(c.info, {'inputs': [0], 'outputs': [0]})
check = np.add.accumulate(d, axis=0)
c = np.add.accumulate(a, axis=0)
assert_equal(c, check)
assert_(c.info, {'inputs': [0]})
b = np.zeros_like(c)
c = np.add.accumulate(a, 0, None, b)
assert_equal(c, check)
assert_(c is b)
assert_(c.info, {'inputs': [0], 'outputs': [0]})
indices = [0, 2, 1]
check = np.add.reduceat(d, indices, axis=1)
c = np.add.reduceat(a, indices, axis=1)
assert_equal(c, check)
assert_(c.info, {'inputs': [0]})
b = np.zeros_like(c)
c = np.add.reduceat(a, indices, 1, None, b)
assert_equal(c, check)
assert_(c is b)
assert_(c.info, {'inputs': [0], 'outputs': [0]})
# and a few tests for at
d = np.array([[1, 2, 3], [1, 2, 3]])
check = d.copy()
a = d.copy().view(A)
np.add.at(check, ([0, 1], [0, 2]), 1.)
np.add.at(a, ([0, 1], [0, 2]), 1.)
assert_equal(a, check)
assert_(a.info, {'inputs': [0]})
b = np.array(1.).view(A)
a = d.copy().view(A)
np.add.at(a, ([0, 1], [0, 2]), b)
assert_equal(a, check)
assert_(a.info, {'inputs': [0, 2]})
def test_array_ufunc_direct_call(self):
# This is mainly a regression test for gh-24023 (shouldn't segfault)
a = np.array(1)
with pytest.raises(TypeError):
a.__array_ufunc__()
# No kwargs means kwargs may be NULL on the C-level
with pytest.raises(TypeError):
a.__array_ufunc__(1, 2)
# And the same with a valid call:
res = a.__array_ufunc__(np.add, "__call__", a, a)
assert_array_equal(res, a + a)
class TestChoose:
def test_mixed(self):
c = np.array([True, True])
a = np.array([True, True])
assert_equal(np.choose(c, (a, 1)), np.array([1, 1]))
class TestRationalFunctions:
def test_lcm(self):
self._test_lcm_inner(np.int16)
self._test_lcm_inner(np.uint16)
def test_lcm_object(self):
self._test_lcm_inner(np.object_)
def test_gcd(self):
self._test_gcd_inner(np.int16)
self._test_lcm_inner(np.uint16)
def test_gcd_object(self):
self._test_gcd_inner(np.object_)
def _test_lcm_inner(self, dtype):
# basic use
a = np.array([12, 120], dtype=dtype)
b = np.array([20, 200], dtype=dtype)
assert_equal(np.lcm(a, b), [60, 600])
if not issubclass(dtype, np.unsignedinteger):
# negatives are ignored
a = np.array([12, -12, 12, -12], dtype=dtype)
b = np.array([20, 20, -20, -20], dtype=dtype)
assert_equal(np.lcm(a, b), [60]*4)
# reduce
a = np.array([3, 12, 20], dtype=dtype)
assert_equal(np.lcm.reduce([3, 12, 20]), 60)
# broadcasting, and a test including 0
a = np.arange(6).astype(dtype)
b = 20
assert_equal(np.lcm(a, b), [0, 20, 20, 60, 20, 20])
def _test_gcd_inner(self, dtype):
# basic use
a = np.array([12, 120], dtype=dtype)
b = np.array([20, 200], dtype=dtype)
assert_equal(np.gcd(a, b), [4, 40])
if not issubclass(dtype, np.unsignedinteger):
# negatives are ignored
a = np.array([12, -12, 12, -12], dtype=dtype)
b = np.array([20, 20, -20, -20], dtype=dtype)
assert_equal(np.gcd(a, b), [4]*4)
# reduce
a = np.array([15, 25, 35], dtype=dtype)
assert_equal(np.gcd.reduce(a), 5)
# broadcasting, and a test including 0
a = np.arange(6).astype(dtype)
b = 20
assert_equal(np.gcd(a, b), [20, 1, 2, 1, 4, 5])
def test_lcm_overflow(self):
# verify that we don't overflow when a*b does overflow
big = np.int32(np.iinfo(np.int32).max // 11)
a = 2*big
b = 5*big
assert_equal(np.lcm(a, b), 10*big)
def test_gcd_overflow(self):
for dtype in (np.int32, np.int64):
# verify that we don't overflow when taking abs(x)
# not relevant for lcm, where the result is unrepresentable anyway
a = dtype(np.iinfo(dtype).min) # negative power of two
q = -(a // 4)
assert_equal(np.gcd(a, q*3), q)
assert_equal(np.gcd(a, -q*3), q)
def test_decimal(self):
from decimal import Decimal
a = np.array([1, 1, -1, -1]) * Decimal('0.20')
b = np.array([1, -1, 1, -1]) * Decimal('0.12')
assert_equal(np.gcd(a, b), 4*[Decimal('0.04')])
assert_equal(np.lcm(a, b), 4*[Decimal('0.60')])
def test_float(self):
# not well-defined on float due to rounding errors
assert_raises(TypeError, np.gcd, 0.3, 0.4)
assert_raises(TypeError, np.lcm, 0.3, 0.4)
def test_builtin_long(self):
# sanity check that array coercion is alright for builtin longs
assert_equal(np.array(2**200).item(), 2**200)
# expressed as prime factors
a = np.array(2**100 * 3**5)
b = np.array([2**100 * 5**7, 2**50 * 3**10])
assert_equal(np.gcd(a, b), [2**100, 2**50 * 3**5])
assert_equal(np.lcm(a, b), [2**100 * 3**5 * 5**7, 2**100 * 3**10])
assert_equal(np.gcd(2**100, 3**100), 1)
class TestRoundingFunctions:
def test_object_direct(self):
""" test direct implementation of these magic methods """
class C:
def __floor__(self):
return 1
def __ceil__(self):
return 2
def __trunc__(self):
return 3
arr = np.array([C(), C()])
assert_equal(np.floor(arr), [1, 1])
assert_equal(np.ceil(arr), [2, 2])
assert_equal(np.trunc(arr), [3, 3])
def test_object_indirect(self):
""" test implementations via __float__ """
class C:
def __float__(self):
return -2.5
arr = np.array([C(), C()])
assert_equal(np.floor(arr), [-3, -3])
assert_equal(np.ceil(arr), [-2, -2])
with pytest.raises(TypeError):
np.trunc(arr) # consistent with math.trunc
def test_fraction(self):
f = Fraction(-4, 3)
assert_equal(np.floor(f), -2)
assert_equal(np.ceil(f), -1)
assert_equal(np.trunc(f), -1)
class TestComplexFunctions:
funcs = [np.arcsin, np.arccos, np.arctan, np.arcsinh, np.arccosh,
np.arctanh, np.sin, np.cos, np.tan, np.exp,
np.exp2, np.log, np.sqrt, np.log10, np.log2,
np.log1p]
def test_it(self):
for f in self.funcs:
if f is np.arccosh:
x = 1.5
else:
x = .5
fr = f(x)
fz = f(complex(x))
assert_almost_equal(fz.real, fr, err_msg='real part %s' % f)
assert_almost_equal(fz.imag, 0., err_msg='imag part %s' % f)
@pytest.mark.xfail(IS_MUSL, reason="gh23049")
@pytest.mark.xfail(IS_WASM, reason="doesn't work")
def test_precisions_consistent(self):
z = 1 + 1j
for f in self.funcs:
fcf = f(np.csingle(z))
fcd = f(np.cdouble(z))
fcl = f(np.clongdouble(z))
assert_almost_equal(fcf, fcd, decimal=6, err_msg='fch-fcd %s' % f)
assert_almost_equal(fcl, fcd, decimal=15, err_msg='fch-fcl %s' % f)
@pytest.mark.xfail(IS_MUSL, reason="gh23049")
@pytest.mark.xfail(IS_WASM, reason="doesn't work")
def test_branch_cuts(self):
# check branch cuts and continuity on them
_check_branch_cut(np.log, -0.5, 1j, 1, -1, True)
_check_branch_cut(np.log2, -0.5, 1j, 1, -1, True)
_check_branch_cut(np.log10, -0.5, 1j, 1, -1, True)
_check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True)
_check_branch_cut(np.sqrt, -0.5, 1j, 1, -1, True)
_check_branch_cut(np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True)
_check_branch_cut(np.arccos, [ -2, 2], [1j, 1j], 1, -1, True)
_check_branch_cut(np.arctan, [0-2j, 2j], [1, 1], -1, 1, True)
_check_branch_cut(np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True)
_check_branch_cut(np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True)
_check_branch_cut(np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True)
# check against bogus branch cuts: assert continuity between quadrants
_check_branch_cut(np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1)
_check_branch_cut(np.arccos, [0-2j, 2j], [ 1, 1], 1, 1)
_check_branch_cut(np.arctan, [ -2, 2], [1j, 1j], 1, 1)
_check_branch_cut(np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1)
_check_branch_cut(np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1)
_check_branch_cut(np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1)
@pytest.mark.xfail(IS_MUSL, reason="gh23049")
@pytest.mark.xfail(IS_WASM, reason="doesn't work")
def test_branch_cuts_complex64(self):
# check branch cuts and continuity on them
_check_branch_cut(np.log, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.log2, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.log10, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.sqrt, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
_check_branch_cut(np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
_check_branch_cut(np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64)
_check_branch_cut(np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64)
_check_branch_cut(np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64)
_check_branch_cut(np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
# check against bogus branch cuts: assert continuity between quadrants
_check_branch_cut(np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64)
_check_branch_cut(np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64)
_check_branch_cut(np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64)
_check_branch_cut(np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64)
_check_branch_cut(np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64)
_check_branch_cut(np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64)
def test_against_cmath(self):
import cmath
points = [-1-1j, -1+1j, +1-1j, +1+1j]
name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
atol = 4*np.finfo(complex).eps
for func in self.funcs:
fname = func.__name__.split('.')[-1]
cname = name_map.get(fname, fname)
try:
cfunc = getattr(cmath, cname)
except AttributeError:
continue
for p in points:
a = complex(func(np.complex_(p)))
b = cfunc(p)
assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
@pytest.mark.xfail(IS_MUSL, reason="gh23049")
@pytest.mark.xfail(IS_WASM, reason="doesn't work")
@pytest.mark.parametrize('dtype', [np.complex64, np.complex_, np.longcomplex])
def test_loss_of_precision(self, dtype):
"""Check loss of precision in complex arc* functions"""
# Check against known-good functions
info = np.finfo(dtype)
real_dtype = dtype(0.).real.dtype
eps = info.eps
def check(x, rtol):
x = x.astype(real_dtype)
z = x.astype(dtype)
d = np.absolute(np.arcsinh(x)/np.arcsinh(z).real - 1)
assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
'arcsinh'))
z = (1j*x).astype(dtype)
d = np.absolute(np.arcsinh(x)/np.arcsin(z).imag - 1)
assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
'arcsin'))
z = x.astype(dtype)
d = np.absolute(np.arctanh(x)/np.arctanh(z).real - 1)
assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
'arctanh'))
z = (1j*x).astype(dtype)
d = np.absolute(np.arctanh(x)/np.arctan(z).imag - 1)
assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
'arctan'))
# The switchover was chosen as 1e-3; hence there can be up to
# ~eps/1e-3 of relative cancellation error before it
x_series = np.logspace(-20, -3.001, 200)
x_basic = np.logspace(-2.999, 0, 10, endpoint=False)
if dtype is np.longcomplex:
if bad_arcsinh():
pytest.skip("Trig functions of np.longcomplex values known "
"to be inaccurate on aarch64 and PPC for some "
"compilation configurations.")
# It's not guaranteed that the system-provided arc functions
# are accurate down to a few epsilons. (Eg. on Linux 64-bit)
# So, give more leeway for long complex tests here:
check(x_series, 50.0*eps)
else:
check(x_series, 2.1*eps)
check(x_basic, 2.0*eps/1e-3)
# Check a few points
z = np.array([1e-5*(1+1j)], dtype=dtype)
p = 9.999999999333333333e-6 + 1.000000000066666666e-5j
d = np.absolute(1-np.arctanh(z)/p)
assert_(np.all(d < 1e-15))
p = 1.0000000000333333333e-5 + 9.999999999666666667e-6j
d = np.absolute(1-np.arcsinh(z)/p)
assert_(np.all(d < 1e-15))
p = 9.999999999333333333e-6j + 1.000000000066666666e-5
d = np.absolute(1-np.arctan(z)/p)
assert_(np.all(d < 1e-15))
p = 1.0000000000333333333e-5j + 9.999999999666666667e-6
d = np.absolute(1-np.arcsin(z)/p)
assert_(np.all(d < 1e-15))
# Check continuity across switchover points
def check(func, z0, d=1):
z0 = np.asarray(z0, dtype=dtype)
zp = z0 + abs(z0) * d * eps * 2
zm = z0 - abs(z0) * d * eps * 2
assert_(np.all(zp != zm), (zp, zm))
# NB: the cancellation error at the switchover is at least eps
good = (abs(func(zp) - func(zm)) < 2*eps)
assert_(np.all(good), (func, z0[~good]))
for func in (np.arcsinh, np.arcsinh, np.arcsin, np.arctanh, np.arctan):
pts = [rp+1j*ip for rp in (-1e-3, 0, 1e-3) for ip in(-1e-3, 0, 1e-3)
if rp != 0 or ip != 0]
check(func, pts, 1)
check(func, pts, 1j)
check(func, pts, 1+1j)
@np.errstate(all="ignore")
def test_promotion_corner_cases(self):
for func in self.funcs:
assert func(np.float16(1)).dtype == np.float16
# Integer to low precision float promotion is a dubious choice:
assert func(np.uint8(1)).dtype == np.float16
assert func(np.int16(1)).dtype == np.float32
class TestAttributes:
def test_attributes(self):
add = ncu.add
assert_equal(add.__name__, 'add')
assert_(add.ntypes >= 18) # don't fail if types added
assert_('ii->i' in add.types)
assert_equal(add.nin, 2)
assert_equal(add.nout, 1)
assert_equal(add.identity, 0)
def test_doc(self):
# don't bother checking the long list of kwargs, which are likely to
# change
assert_(ncu.add.__doc__.startswith(
"add(x1, x2, /, out=None, *, where=True"))
assert_(ncu.frexp.__doc__.startswith(
"frexp(x[, out1, out2], / [, out=(None, None)], *, where=True"))
class TestSubclass:
def test_subclass_op(self):
class simple(np.ndarray):
def __new__(subtype, shape):
self = np.ndarray.__new__(subtype, shape, dtype=object)
self.fill(0)
return self
a = simple((3, 4))
assert_equal(a+a, a)
class TestFrompyfunc:
def test_identity(self):
def mul(a, b):
return a * b
# with identity=value
mul_ufunc = np.frompyfunc(mul, nin=2, nout=1, identity=1)
assert_equal(mul_ufunc.reduce([2, 3, 4]), 24)
assert_equal(mul_ufunc.reduce(np.ones((2, 2)), axis=(0, 1)), 1)
assert_equal(mul_ufunc.reduce([]), 1)
# with identity=None (reorderable)
mul_ufunc = np.frompyfunc(mul, nin=2, nout=1, identity=None)
assert_equal(mul_ufunc.reduce([2, 3, 4]), 24)
assert_equal(mul_ufunc.reduce(np.ones((2, 2)), axis=(0, 1)), 1)
assert_raises(ValueError, lambda: mul_ufunc.reduce([]))
# with no identity (not reorderable)
mul_ufunc = np.frompyfunc(mul, nin=2, nout=1)
assert_equal(mul_ufunc.reduce([2, 3, 4]), 24)
assert_raises(ValueError, lambda: mul_ufunc.reduce(np.ones((2, 2)), axis=(0, 1)))
assert_raises(ValueError, lambda: mul_ufunc.reduce([]))
def _check_branch_cut(f, x0, dx, re_sign=1, im_sign=-1, sig_zero_ok=False,
dtype=complex):
"""
Check for a branch cut in a function.
Assert that `x0` lies on a branch cut of function `f` and `f` is
continuous from the direction `dx`.
Parameters
----------
f : func
Function to check
x0 : array-like
Point on branch cut
dx : array-like
Direction to check continuity in
re_sign, im_sign : {1, -1}
Change of sign of the real or imaginary part expected
sig_zero_ok : bool
Whether to check if the branch cut respects signed zero (if applicable)
dtype : dtype
Dtype to check (should be complex)
"""
x0 = np.atleast_1d(x0).astype(dtype)
dx = np.atleast_1d(dx).astype(dtype)
if np.dtype(dtype).char == 'F':
scale = np.finfo(dtype).eps * 1e2
atol = np.float32(1e-2)
else:
scale = np.finfo(dtype).eps * 1e3
atol = 1e-4
y0 = f(x0)
yp = f(x0 + dx*scale*np.absolute(x0)/np.absolute(dx))
ym = f(x0 - dx*scale*np.absolute(x0)/np.absolute(dx))
assert_(np.all(np.absolute(y0.real - yp.real) < atol), (y0, yp))
assert_(np.all(np.absolute(y0.imag - yp.imag) < atol), (y0, yp))
assert_(np.all(np.absolute(y0.real - ym.real*re_sign) < atol), (y0, ym))
assert_(np.all(np.absolute(y0.imag - ym.imag*im_sign) < atol), (y0, ym))
if sig_zero_ok:
# check that signed zeros also work as a displacement
jr = (x0.real == 0) & (dx.real != 0)
ji = (x0.imag == 0) & (dx.imag != 0)
if np.any(jr):
x = x0[jr]
x.real = np.NZERO
ym = f(x)
assert_(np.all(np.absolute(y0[jr].real - ym.real*re_sign) < atol), (y0[jr], ym))
assert_(np.all(np.absolute(y0[jr].imag - ym.imag*im_sign) < atol), (y0[jr], ym))
if np.any(ji):
x = x0[ji]
x.imag = np.NZERO
ym = f(x)
assert_(np.all(np.absolute(y0[ji].real - ym.real*re_sign) < atol), (y0[ji], ym))
assert_(np.all(np.absolute(y0[ji].imag - ym.imag*im_sign) < atol), (y0[ji], ym))
def test_copysign():
assert_(np.copysign(1, -1) == -1)
with np.errstate(divide="ignore"):
assert_(1 / np.copysign(0, -1) < 0)
assert_(1 / np.copysign(0, 1) > 0)
assert_(np.signbit(np.copysign(np.nan, -1)))
assert_(not np.signbit(np.copysign(np.nan, 1)))
def _test_nextafter(t):
one = t(1)
two = t(2)
zero = t(0)
eps = np.finfo(t).eps
assert_(np.nextafter(one, two) - one == eps)
assert_(np.nextafter(one, zero) - one < 0)
assert_(np.isnan(np.nextafter(np.nan, one)))
assert_(np.isnan(np.nextafter(one, np.nan)))
assert_(np.nextafter(one, one) == one)
def test_nextafter():
return _test_nextafter(np.float64)
def test_nextafterf():
return _test_nextafter(np.float32)
@pytest.mark.skipif(np.finfo(np.double) == np.finfo(np.longdouble),
reason="long double is same as double")
@pytest.mark.xfail(condition=platform.machine().startswith("ppc64"),
reason="IBM double double")
def test_nextafterl():
return _test_nextafter(np.longdouble)
def test_nextafter_0():
for t, direction in itertools.product(np.sctypes['float'], (1, -1)):
# The value of tiny for double double is NaN, so we need to pass the
# assert
with suppress_warnings() as sup:
sup.filter(UserWarning)
if not np.isnan(np.finfo(t).tiny):
tiny = np.finfo(t).tiny
assert_(
0. < direction * np.nextafter(t(0), t(direction)) < tiny)
assert_equal(np.nextafter(t(0), t(direction)) / t(2.1), direction * 0.0)
def _test_spacing(t):
one = t(1)
eps = np.finfo(t).eps
nan = t(np.nan)
inf = t(np.inf)
with np.errstate(invalid='ignore'):
assert_equal(np.spacing(one), eps)
assert_(np.isnan(np.spacing(nan)))
assert_(np.isnan(np.spacing(inf)))
assert_(np.isnan(np.spacing(-inf)))
assert_(np.spacing(t(1e30)) != 0)
def test_spacing():
return _test_spacing(np.float64)
def test_spacingf():
return _test_spacing(np.float32)
@pytest.mark.skipif(np.finfo(np.double) == np.finfo(np.longdouble),
reason="long double is same as double")
@pytest.mark.xfail(condition=platform.machine().startswith("ppc64"),
reason="IBM double double")
def test_spacingl():
return _test_spacing(np.longdouble)
def test_spacing_gfortran():
# Reference from this fortran file, built with gfortran 4.3.3 on linux
# 32bits:
# PROGRAM test_spacing
# INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
# INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)
#
# WRITE(*,*) spacing(0.00001_DBL)
# WRITE(*,*) spacing(1.0_DBL)
# WRITE(*,*) spacing(1000._DBL)
# WRITE(*,*) spacing(10500._DBL)
#
# WRITE(*,*) spacing(0.00001_SGL)
# WRITE(*,*) spacing(1.0_SGL)
# WRITE(*,*) spacing(1000._SGL)
# WRITE(*,*) spacing(10500._SGL)
# END PROGRAM
ref = {np.float64: [1.69406589450860068E-021,
2.22044604925031308E-016,
1.13686837721616030E-013,
1.81898940354585648E-012],
np.float32: [9.09494702E-13,
1.19209290E-07,
6.10351563E-05,
9.76562500E-04]}
for dt, dec_ in zip([np.float32, np.float64], (10, 20)):
x = np.array([1e-5, 1, 1000, 10500], dtype=dt)
assert_array_almost_equal(np.spacing(x), ref[dt], decimal=dec_)
def test_nextafter_vs_spacing():
# XXX: spacing does not handle long double yet
for t in [np.float32, np.float64]:
for _f in [1, 1e-5, 1000]:
f = t(_f)
f1 = t(_f + 1)
assert_(np.nextafter(f, f1) - f == np.spacing(f))
def test_pos_nan():
"""Check np.nan is a positive nan."""
assert_(np.signbit(np.nan) == 0)
def test_reduceat():
"""Test bug in reduceat when structured arrays are not copied."""
db = np.dtype([('name', 'S11'), ('time', np.int64), ('value', np.float32)])
a = np.empty([100], dtype=db)
a['name'] = 'Simple'
a['time'] = 10
a['value'] = 100
indx = [0, 7, 15, 25]
h2 = []
val1 = indx[0]
for val2 in indx[1:]:
h2.append(np.add.reduce(a['value'][val1:val2]))
val1 = val2
h2.append(np.add.reduce(a['value'][val1:]))
h2 = np.array(h2)
# test buffered -- this should work
h1 = np.add.reduceat(a['value'], indx)
assert_array_almost_equal(h1, h2)
# This is when the error occurs.
# test no buffer
np.setbufsize(32)
h1 = np.add.reduceat(a['value'], indx)
np.setbufsize(np.UFUNC_BUFSIZE_DEFAULT)
assert_array_almost_equal(h1, h2)
def test_reduceat_empty():
"""Reduceat should work with empty arrays"""
indices = np.array([], 'i4')
x = np.array([], 'f8')
result = np.add.reduceat(x, indices)
assert_equal(result.dtype, x.dtype)
assert_equal(result.shape, (0,))
# Another case with a slightly different zero-sized shape
x = np.ones((5, 2))
result = np.add.reduceat(x, [], axis=0)
assert_equal(result.dtype, x.dtype)
assert_equal(result.shape, (0, 2))
result = np.add.reduceat(x, [], axis=1)
assert_equal(result.dtype, x.dtype)
assert_equal(result.shape, (5, 0))
def test_complex_nan_comparisons():
nans = [complex(np.nan, 0), complex(0, np.nan), complex(np.nan, np.nan)]
fins = [complex(1, 0), complex(-1, 0), complex(0, 1), complex(0, -1),
complex(1, 1), complex(-1, -1), complex(0, 0)]
with np.errstate(invalid='ignore'):
for x in nans + fins:
x = np.array([x])
for y in nans + fins:
y = np.array([y])
if np.isfinite(x) and np.isfinite(y):
continue
assert_equal(x < y, False, err_msg="%r < %r" % (x, y))
assert_equal(x > y, False, err_msg="%r > %r" % (x, y))
assert_equal(x <= y, False, err_msg="%r <= %r" % (x, y))
assert_equal(x >= y, False, err_msg="%r >= %r" % (x, y))
assert_equal(x == y, False, err_msg="%r == %r" % (x, y))
def test_rint_big_int():
# np.rint bug for large integer values on Windows 32-bit and MKL
# https://github.com/numpy/numpy/issues/6685
val = 4607998452777363968
# This is exactly representable in floating point
assert_equal(val, int(float(val)))
# Rint should not change the value
assert_equal(val, np.rint(val))
@pytest.mark.parametrize('ftype', [np.float32, np.float64])
def test_memoverlap_accumulate(ftype):
# Reproduces bug https://github.com/numpy/numpy/issues/15597
arr = np.array([0.61, 0.60, 0.77, 0.41, 0.19], dtype=ftype)
out_max = np.array([0.61, 0.61, 0.77, 0.77, 0.77], dtype=ftype)
out_min = np.array([0.61, 0.60, 0.60, 0.41, 0.19], dtype=ftype)
assert_equal(np.maximum.accumulate(arr), out_max)
assert_equal(np.minimum.accumulate(arr), out_min)
@pytest.mark.parametrize("ufunc, dtype", [
(ufunc, t[0])
for ufunc in UFUNCS_BINARY_ACC
for t in ufunc.types
if t[-1] == '?' and t[0] not in 'DFGMmO'
])
def test_memoverlap_accumulate_cmp(ufunc, dtype):
if ufunc.signature:
pytest.skip('For generic signatures only')
for size in (2, 8, 32, 64, 128, 256):
arr = np.array([0, 1, 1]*size, dtype=dtype)
acc = ufunc.accumulate(arr, dtype='?')
acc_u8 = acc.view(np.uint8)
exp = np.array(list(itertools.accumulate(arr, ufunc)), dtype=np.uint8)
assert_equal(exp, acc_u8)
@pytest.mark.parametrize("ufunc, dtype", [
(ufunc, t[0])
for ufunc in UFUNCS_BINARY_ACC
for t in ufunc.types
if t[0] == t[1] and t[0] == t[-1] and t[0] not in 'DFGMmO?'
])
def test_memoverlap_accumulate_symmetric(ufunc, dtype):
if ufunc.signature:
pytest.skip('For generic signatures only')
with np.errstate(all='ignore'):
for size in (2, 8, 32, 64, 128, 256):
arr = np.array([0, 1, 2]*size).astype(dtype)
acc = ufunc.accumulate(arr, dtype=dtype)
exp = np.array(list(itertools.accumulate(arr, ufunc)), dtype=dtype)
assert_equal(exp, acc)
def test_signaling_nan_exceptions():
with assert_no_warnings():
a = np.ndarray(shape=(), dtype='float32', buffer=b'\x00\xe0\xbf\xff')
np.isnan(a)
@pytest.mark.parametrize("arr", [
np.arange(2),
np.matrix([0, 1]),
np.matrix([[0, 1], [2, 5]]),
])
def test_outer_subclass_preserve(arr):
# for gh-8661
class foo(np.ndarray): pass
actual = np.multiply.outer(arr.view(foo), arr.view(foo))
assert actual.__class__.__name__ == 'foo'
def test_outer_bad_subclass():
class BadArr1(np.ndarray):
def __array_finalize__(self, obj):
# The outer call reshapes to 3 dims, try to do a bad reshape.
if self.ndim == 3:
self.shape = self.shape + (1,)
def __array_prepare__(self, obj, context=None):
return obj
class BadArr2(np.ndarray):
def __array_finalize__(self, obj):
if isinstance(obj, BadArr2):
# outer inserts 1-sized dims. In that case disturb them.
if self.shape[-1] == 1:
self.shape = self.shape[::-1]
def __array_prepare__(self, obj, context=None):
return obj
for cls in [BadArr1, BadArr2]:
arr = np.ones((2, 3)).view(cls)
with assert_raises(TypeError) as a:
# The first array gets reshaped (not the second one)
np.add.outer(arr, [1, 2])
# This actually works, since we only see the reshaping error:
arr = np.ones((2, 3)).view(cls)
assert type(np.add.outer([1, 2], arr)) is cls
def test_outer_exceeds_maxdims():
deep = np.ones((1,) * 17)
with assert_raises(ValueError):
np.add.outer(deep, deep)
def test_bad_legacy_ufunc_silent_errors():
# legacy ufuncs can't report errors and NumPy can't check if the GIL
# is released. So NumPy has to check after the GIL is released just to
# cover all bases. `np.power` uses/used to use this.
arr = np.arange(3).astype(np.float64)
with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
ncu_tests.always_error(arr, arr)
with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
# not contiguous means the fast-path cannot be taken
non_contig = arr.repeat(20).reshape(-1, 6)[:, ::2]
ncu_tests.always_error(non_contig, arr)
with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
ncu_tests.always_error.outer(arr, arr)
with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
ncu_tests.always_error.reduce(arr)
with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
ncu_tests.always_error.reduceat(arr, [0, 1])
with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
ncu_tests.always_error.accumulate(arr)
with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
ncu_tests.always_error.at(arr, [0, 1, 2], arr)
@pytest.mark.parametrize('x1', [np.arange(3.0), [0.0, 1.0, 2.0]])
def test_bad_legacy_gufunc_silent_errors(x1):
# Verify that an exception raised in a gufunc loop propagates correctly.
# The signature of always_error_gufunc is '(i),()->()'.
with pytest.raises(RuntimeError, match=r"How unexpected :\)!"):
ncu_tests.always_error_gufunc(x1, 0.0)
Zerion Mini Shell 1.0