Mini Shell
""" Test functions for limits module.
"""
import warnings
import numpy as np
import pytest
from numpy.core import finfo, iinfo
from numpy import half, single, double, longdouble
from numpy.testing import assert_equal, assert_, assert_raises
from numpy.core.getlimits import _discovered_machar, _float_ma
##################################################
class TestPythonFloat:
def test_singleton(self):
ftype = finfo(float)
ftype2 = finfo(float)
assert_equal(id(ftype), id(ftype2))
class TestHalf:
def test_singleton(self):
ftype = finfo(half)
ftype2 = finfo(half)
assert_equal(id(ftype), id(ftype2))
class TestSingle:
def test_singleton(self):
ftype = finfo(single)
ftype2 = finfo(single)
assert_equal(id(ftype), id(ftype2))
class TestDouble:
def test_singleton(self):
ftype = finfo(double)
ftype2 = finfo(double)
assert_equal(id(ftype), id(ftype2))
class TestLongdouble:
def test_singleton(self):
ftype = finfo(longdouble)
ftype2 = finfo(longdouble)
assert_equal(id(ftype), id(ftype2))
def assert_finfo_equal(f1, f2):
# assert two finfo instances have the same attributes
for attr in ('bits', 'eps', 'epsneg', 'iexp', 'machep',
'max', 'maxexp', 'min', 'minexp', 'negep', 'nexp',
'nmant', 'precision', 'resolution', 'tiny',
'smallest_normal', 'smallest_subnormal'):
assert_equal(getattr(f1, attr), getattr(f2, attr),
f'finfo instances {f1} and {f2} differ on {attr}')
def assert_iinfo_equal(i1, i2):
# assert two iinfo instances have the same attributes
for attr in ('bits', 'min', 'max'):
assert_equal(getattr(i1, attr), getattr(i2, attr),
f'iinfo instances {i1} and {i2} differ on {attr}')
class TestFinfo:
def test_basic(self):
dts = list(zip(['f2', 'f4', 'f8', 'c8', 'c16'],
[np.float16, np.float32, np.float64, np.complex64,
np.complex128]))
for dt1, dt2 in dts:
assert_finfo_equal(finfo(dt1), finfo(dt2))
assert_raises(ValueError, finfo, 'i4')
def test_regression_gh23108(self):
# np.float32(1.0) and np.float64(1.0) have the same hash and are
# equal under the == operator
f1 = np.finfo(np.float32(1.0))
f2 = np.finfo(np.float64(1.0))
assert f1 != f2
def test_regression_gh23867(self):
class NonHashableWithDtype:
__hash__ = None
dtype = np.dtype('float32')
x = NonHashableWithDtype()
assert np.finfo(x) == np.finfo(x.dtype)
class TestIinfo:
def test_basic(self):
dts = list(zip(['i1', 'i2', 'i4', 'i8',
'u1', 'u2', 'u4', 'u8'],
[np.int8, np.int16, np.int32, np.int64,
np.uint8, np.uint16, np.uint32, np.uint64]))
for dt1, dt2 in dts:
assert_iinfo_equal(iinfo(dt1), iinfo(dt2))
assert_raises(ValueError, iinfo, 'f4')
def test_unsigned_max(self):
types = np.sctypes['uint']
for T in types:
with np.errstate(over="ignore"):
max_calculated = T(0) - T(1)
assert_equal(iinfo(T).max, max_calculated)
class TestRepr:
def test_iinfo_repr(self):
expected = "iinfo(min=-32768, max=32767, dtype=int16)"
assert_equal(repr(np.iinfo(np.int16)), expected)
def test_finfo_repr(self):
expected = "finfo(resolution=1e-06, min=-3.4028235e+38," + \
" max=3.4028235e+38, dtype=float32)"
assert_equal(repr(np.finfo(np.float32)), expected)
def test_instances():
# Test the finfo and iinfo results on numeric instances agree with
# the results on the corresponding types
for c in [int, np.int16, np.int32, np.int64]:
class_iinfo = iinfo(c)
instance_iinfo = iinfo(c(12))
assert_iinfo_equal(class_iinfo, instance_iinfo)
for c in [float, np.float16, np.float32, np.float64]:
class_finfo = finfo(c)
instance_finfo = finfo(c(1.2))
assert_finfo_equal(class_finfo, instance_finfo)
with pytest.raises(ValueError):
iinfo(10.)
with pytest.raises(ValueError):
iinfo('hi')
with pytest.raises(ValueError):
finfo(np.int64(1))
def assert_ma_equal(discovered, ma_like):
# Check MachAr-like objects same as calculated MachAr instances
for key, value in discovered.__dict__.items():
assert_equal(value, getattr(ma_like, key))
if hasattr(value, 'shape'):
assert_equal(value.shape, getattr(ma_like, key).shape)
assert_equal(value.dtype, getattr(ma_like, key).dtype)
def test_known_types():
# Test we are correctly compiling parameters for known types
for ftype, ma_like in ((np.float16, _float_ma[16]),
(np.float32, _float_ma[32]),
(np.float64, _float_ma[64])):
assert_ma_equal(_discovered_machar(ftype), ma_like)
# Suppress warning for broken discovery of double double on PPC
with np.errstate(all='ignore'):
ld_ma = _discovered_machar(np.longdouble)
bytes = np.dtype(np.longdouble).itemsize
if (ld_ma.it, ld_ma.maxexp) == (63, 16384) and bytes in (12, 16):
# 80-bit extended precision
assert_ma_equal(ld_ma, _float_ma[80])
elif (ld_ma.it, ld_ma.maxexp) == (112, 16384) and bytes == 16:
# IEE 754 128-bit
assert_ma_equal(ld_ma, _float_ma[128])
def test_subnormal_warning():
"""Test that the subnormal is zero warning is not being raised."""
with np.errstate(all='ignore'):
ld_ma = _discovered_machar(np.longdouble)
bytes = np.dtype(np.longdouble).itemsize
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
if (ld_ma.it, ld_ma.maxexp) == (63, 16384) and bytes in (12, 16):
# 80-bit extended precision
ld_ma.smallest_subnormal
assert len(w) == 0
elif (ld_ma.it, ld_ma.maxexp) == (112, 16384) and bytes == 16:
# IEE 754 128-bit
ld_ma.smallest_subnormal
assert len(w) == 0
else:
# Double double
ld_ma.smallest_subnormal
# This test may fail on some platforms
assert len(w) == 0
def test_plausible_finfo():
# Assert that finfo returns reasonable results for all types
for ftype in np.sctypes['float'] + np.sctypes['complex']:
info = np.finfo(ftype)
assert_(info.nmant > 1)
assert_(info.minexp < -1)
assert_(info.maxexp > 1)
Zerion Mini Shell 1.0