Mini Shell
require 'ruby_vm/rjit/assembler'
require 'ruby_vm/rjit/block'
require 'ruby_vm/rjit/branch_stub'
require 'ruby_vm/rjit/code_block'
require 'ruby_vm/rjit/context'
require 'ruby_vm/rjit/entry_stub'
require 'ruby_vm/rjit/exit_compiler'
require 'ruby_vm/rjit/insn_compiler'
require 'ruby_vm/rjit/instruction'
require 'ruby_vm/rjit/invariants'
require 'ruby_vm/rjit/jit_state'
require 'ruby_vm/rjit/type'
module RubyVM::RJIT
# Compilation status
KeepCompiling = :KeepCompiling
CantCompile = :CantCompile
EndBlock = :EndBlock
# Ruby constants
Qtrue = Fiddle::Qtrue
Qfalse = Fiddle::Qfalse
Qnil = Fiddle::Qnil
Qundef = Fiddle::Qundef
# Callee-saved registers
# TODO: support using r12/r13 here
EC = :r14
CFP = :r15
SP = :rbx
# Scratch registers: rax, rcx, rdx
# Mark objects in this Array during GC
GC_REFS = []
# Maximum number of versions per block
# 1 means always create generic versions
MAX_VERSIONS = 4
class Compiler
attr_accessor :write_pos
def self.decode_insn(encoded)
INSNS.fetch(C.rb_vm_insn_decode(encoded))
end
def initialize
mem_size = C.rjit_opts.exec_mem_size * 1024 * 1024
mem_block = C.mmap(mem_size)
@cb = CodeBlock.new(mem_block: mem_block, mem_size: mem_size / 2)
@ocb = CodeBlock.new(mem_block: mem_block + mem_size / 2, mem_size: mem_size / 2, outlined: true)
@exit_compiler = ExitCompiler.new
@insn_compiler = InsnCompiler.new(@cb, @ocb, @exit_compiler)
Invariants.initialize(@cb, @ocb, self, @exit_compiler)
end
# Compile an ISEQ from its entry point.
# @param iseq `RubyVM::RJIT::CPointer::Struct_rb_iseq_t`
# @param cfp `RubyVM::RJIT::CPointer::Struct_rb_control_frame_t`
def compile(iseq, cfp)
return unless supported_platform?
pc = cfp.pc.to_i
jit = JITState.new(iseq:, cfp:)
asm = Assembler.new
compile_prologue(asm, iseq, pc)
compile_block(asm, jit:, pc:)
iseq.body.jit_entry = @cb.write(asm)
rescue Exception => e
STDERR.puts "#{e.class}: #{e.message}"
STDERR.puts e.backtrace
exit 1
end
# Compile an entry.
# @param entry [RubyVM::RJIT::EntryStub]
def entry_stub_hit(entry_stub, cfp)
# Compile a new entry guard as a next entry
pc = cfp.pc.to_i
next_entry = Assembler.new.then do |asm|
compile_entry_chain_guard(asm, cfp.iseq, pc)
@cb.write(asm)
end
# Try to find an existing compiled version of this block
ctx = Context.new
block = find_block(cfp.iseq, pc, ctx)
if block
# If an existing block is found, generate a jump to the block.
asm = Assembler.new
asm.jmp(block.start_addr)
@cb.write(asm)
else
# If this block hasn't yet been compiled, generate blocks after the entry guard.
asm = Assembler.new
jit = JITState.new(iseq: cfp.iseq, cfp:)
compile_block(asm, jit:, pc:, ctx:)
@cb.write(asm)
block = jit.block
end
# Regenerate the previous entry
@cb.with_write_addr(entry_stub.start_addr) do
# The last instruction of compile_entry_chain_guard is jne
asm = Assembler.new
asm.jne(next_entry)
@cb.write(asm)
end
return block.start_addr
rescue Exception => e
STDERR.puts e.full_message
exit 1
end
# Compile a branch stub.
# @param branch_stub [RubyVM::RJIT::BranchStub]
# @param cfp `RubyVM::RJIT::CPointer::Struct_rb_control_frame_t`
# @param target0_p [TrueClass,FalseClass]
# @return [Integer] The starting address of the compiled branch stub
def branch_stub_hit(branch_stub, cfp, target0_p)
# Update cfp->pc for `jit.at_current_insn?`
target = target0_p ? branch_stub.target0 : branch_stub.target1
cfp.pc = target.pc
# Reuse an existing block if it already exists
block = find_block(branch_stub.iseq, target.pc, target.ctx)
# If the branch stub's jump is the last code, allow overwriting part of
# the old branch code with the new block code.
fallthrough = block.nil? && @cb.write_addr == branch_stub.end_addr
if fallthrough
# If the branch stub's jump is the last code, allow overwriting part of
# the old branch code with the new block code.
@cb.set_write_addr(branch_stub.start_addr)
branch_stub.shape = target0_p ? Next0 : Next1
Assembler.new.tap do |branch_asm|
branch_stub.compile.call(branch_asm)
@cb.write(branch_asm)
end
end
# Reuse or generate a block
if block
target.address = block.start_addr
else
jit = JITState.new(iseq: branch_stub.iseq, cfp:)
target.address = Assembler.new.then do |asm|
compile_block(asm, jit:, pc: target.pc, ctx: target.ctx.dup)
@cb.write(asm)
end
block = jit.block
end
block.incoming << branch_stub # prepare for invalidate_block
# Re-generate the branch code for non-fallthrough cases
unless fallthrough
@cb.with_write_addr(branch_stub.start_addr) do
branch_asm = Assembler.new
branch_stub.compile.call(branch_asm)
@cb.write(branch_asm)
end
end
return target.address
rescue Exception => e
STDERR.puts e.full_message
exit 1
end
# @param iseq `RubyVM::RJIT::CPointer::Struct_rb_iseq_t`
# @param pc [Integer]
def invalidate_blocks(iseq, pc)
list_blocks(iseq, pc).each do |block|
invalidate_block(block)
end
# If they were the ISEQ's first blocks, re-compile RJIT entry as well
if iseq.body.iseq_encoded.to_i == pc
iseq.body.jit_entry = 0
iseq.body.jit_entry_calls = 0
end
end
def invalidate_block(block)
iseq = block.iseq
# Avoid touching GCed ISEQs. We assume it won't be re-entered.
return unless C.imemo_type_p(iseq, C.imemo_iseq)
# Remove this block from the version array
remove_block(iseq, block)
# Invalidate the block with entry exit
unless block.invalidated
@cb.with_write_addr(block.start_addr) do
asm = Assembler.new
asm.comment('invalidate_block')
asm.jmp(block.entry_exit)
@cb.write(asm)
end
block.invalidated = true
end
# Re-stub incoming branches
block.incoming.each do |branch_stub|
target = [branch_stub.target0, branch_stub.target1].compact.find do |target|
target.pc == block.pc && target.ctx == block.ctx
end
next if target.nil?
# TODO: Could target.address be a stub address? Is invalidation not needed in that case?
# If the target being re-generated is currently a fallthrough block,
# the fallthrough code must be rewritten with a jump to the stub.
if target.address == branch_stub.end_addr
branch_stub.shape = Default
end
target.address = Assembler.new.then do |ocb_asm|
@exit_compiler.compile_branch_stub(block.ctx, ocb_asm, branch_stub, target == branch_stub.target0)
@ocb.write(ocb_asm)
end
@cb.with_write_addr(branch_stub.start_addr) do
branch_asm = Assembler.new
branch_stub.compile.call(branch_asm)
@cb.write(branch_asm)
end
end
end
private
# Callee-saved: rbx, rsp, rbp, r12, r13, r14, r15
# Caller-saved: rax, rdi, rsi, rdx, rcx, r8, r9, r10, r11
#
# @param asm [RubyVM::RJIT::Assembler]
def compile_prologue(asm, iseq, pc)
asm.comment('RJIT entry point')
# Save callee-saved registers used by JITed code
asm.push(CFP)
asm.push(EC)
asm.push(SP)
# Move arguments EC and CFP to dedicated registers
asm.mov(EC, :rdi)
asm.mov(CFP, :rsi)
# Load sp to a dedicated register
asm.mov(SP, [CFP, C.rb_control_frame_t.offsetof(:sp)]) # rbx = cfp->sp
# Setup cfp->jit_return
asm.mov(:rax, leave_exit)
asm.mov([CFP, C.rb_control_frame_t.offsetof(:jit_return)], :rax)
# We're compiling iseqs that we *expect* to start at `insn_idx`. But in
# the case of optional parameters, the interpreter can set the pc to a
# different location depending on the optional parameters. If an iseq
# has optional parameters, we'll add a runtime check that the PC we've
# compiled for is the same PC that the interpreter wants us to run with.
# If they don't match, then we'll take a side exit.
if iseq.body.param.flags.has_opt
compile_entry_chain_guard(asm, iseq, pc)
end
end
def compile_entry_chain_guard(asm, iseq, pc)
entry_stub = EntryStub.new
stub_addr = Assembler.new.then do |ocb_asm|
@exit_compiler.compile_entry_stub(ocb_asm, entry_stub)
@ocb.write(ocb_asm)
end
asm.comment('guard expected PC')
asm.mov(:rax, pc)
asm.cmp([CFP, C.rb_control_frame_t.offsetof(:pc)], :rax)
asm.stub(entry_stub) do
asm.jne(stub_addr)
end
end
# @param asm [RubyVM::RJIT::Assembler]
# @param jit [RubyVM::RJIT::JITState]
# @param ctx [RubyVM::RJIT::Context]
def compile_block(asm, jit:, pc:, ctx: Context.new)
# Mark the block start address and prepare an exit code storage
ctx = limit_block_versions(jit.iseq, pc, ctx)
block = Block.new(iseq: jit.iseq, pc:, ctx: ctx.dup)
jit.block = block
asm.block(block)
iseq = jit.iseq
asm.comment("Block: #{iseq.body.location.label}@#{C.rb_iseq_path(iseq)}:#{iseq_lineno(iseq, pc)}")
# Compile each insn
index = (pc - iseq.body.iseq_encoded.to_i) / C.VALUE.size
while index < iseq.body.iseq_size
# Set the current instruction
insn = self.class.decode_insn(iseq.body.iseq_encoded[index])
jit.pc = (iseq.body.iseq_encoded + index).to_i
jit.stack_size_for_pc = ctx.stack_size
jit.side_exit_for_pc.clear
# If previous instruction requested to record the boundary
if jit.record_boundary_patch_point
# Generate an exit to this instruction and record it
exit_pos = Assembler.new.then do |ocb_asm|
@exit_compiler.compile_side_exit(jit.pc, ctx, ocb_asm)
@ocb.write(ocb_asm)
end
Invariants.record_global_inval_patch(asm, exit_pos)
jit.record_boundary_patch_point = false
end
# In debug mode, verify our existing assumption
if C.rjit_opts.verify_ctx && jit.at_current_insn?
verify_ctx(jit, ctx)
end
case status = @insn_compiler.compile(jit, ctx, asm, insn)
when KeepCompiling
# For now, reset the chain depth after each instruction as only the
# first instruction in the block can concern itself with the depth.
ctx.chain_depth = 0
index += insn.len
when EndBlock
# TODO: pad nops if entry exit exists (not needed for x86_64?)
break
when CantCompile
# Rewind stack_size using ctx.with_stack_size to allow stack_size changes
# before you return CantCompile.
@exit_compiler.compile_side_exit(jit.pc, ctx.with_stack_size(jit.stack_size_for_pc), asm)
# If this is the first instruction, this block never needs to be invalidated.
if block.pc == iseq.body.iseq_encoded.to_i + index * C.VALUE.size
block.invalidated = true
end
break
else
raise "compiling #{insn.name} returned unexpected status: #{status.inspect}"
end
end
incr_counter(:compiled_block_count)
add_block(iseq, block)
end
def leave_exit
@leave_exit ||= Assembler.new.then do |asm|
@exit_compiler.compile_leave_exit(asm)
@ocb.write(asm)
end
end
def incr_counter(name)
if C.rjit_opts.stats
C.rb_rjit_counters[name][0] += 1
end
end
# Produce a generic context when the block version limit is hit for the block
def limit_block_versions(iseq, pc, ctx)
# Guard chains implement limits separately, do nothing
if ctx.chain_depth > 0
return ctx.dup
end
# If this block version we're about to add will hit the version limit
if list_blocks(iseq, pc).size + 1 >= MAX_VERSIONS
# Produce a generic context that stores no type information,
# but still respects the stack_size and sp_offset constraints.
# This new context will then match all future requests.
generic_ctx = Context.new
generic_ctx.stack_size = ctx.stack_size
generic_ctx.sp_offset = ctx.sp_offset
if ctx.diff(generic_ctx) == TypeDiff::Incompatible
raise 'should substitute a compatible context'
end
return generic_ctx
end
return ctx.dup
end
def list_blocks(iseq, pc)
rjit_blocks(iseq)[pc]
end
# @param [Integer] pc
# @param [RubyVM::RJIT::Context] ctx
# @return [RubyVM::RJIT::Block,NilClass]
def find_block(iseq, pc, ctx)
versions = rjit_blocks(iseq)[pc]
best_version = nil
best_diff = Float::INFINITY
versions.each do |block|
# Note that we always prefer the first matching
# version found because of inline-cache chains
case ctx.diff(block.ctx)
in TypeDiff::Compatible[diff] if diff < best_diff
best_version = block
best_diff = diff
else
end
end
return best_version
end
# @param [RubyVM::RJIT::Block] block
def add_block(iseq, block)
rjit_blocks(iseq)[block.pc] << block
end
# @param [RubyVM::RJIT::Block] block
def remove_block(iseq, block)
rjit_blocks(iseq)[block.pc].delete(block)
end
def rjit_blocks(iseq)
# Guard against ISEQ GC at random moments
unless C.imemo_type_p(iseq, C.imemo_iseq)
return Hash.new { |h, k| h[k] = [] }
end
unless iseq.body.rjit_blocks
iseq.body.rjit_blocks = Hash.new { |blocks, pc| blocks[pc] = [] }
# For some reason, rb_rjit_iseq_mark didn't protect this Hash
# from being freed. So we rely on GC_REFS to keep the Hash.
GC_REFS << iseq.body.rjit_blocks
end
iseq.body.rjit_blocks
end
def iseq_lineno(iseq, pc)
C.rb_iseq_line_no(iseq, (pc - iseq.body.iseq_encoded.to_i) / C.VALUE.size)
rescue RangeError # bignum too big to convert into `unsigned long long' (RangeError)
-1
end
# Verify the ctx's types and mappings against the compile-time stack, self, and locals.
# @param jit [RubyVM::RJIT::JITState]
# @param ctx [RubyVM::RJIT::Context]
def verify_ctx(jit, ctx)
# Only able to check types when at current insn
assert(jit.at_current_insn?)
self_val = jit.peek_at_self
self_val_type = Type.from(self_val)
# Verify self operand type
assert_compatible(self_val_type, ctx.get_opnd_type(SelfOpnd))
# Verify stack operand types
[ctx.stack_size, MAX_TEMP_TYPES].min.times do |i|
learned_mapping, learned_type = ctx.get_opnd_mapping(StackOpnd[i])
stack_val = jit.peek_at_stack(i)
val_type = Type.from(stack_val)
case learned_mapping
in MapToSelf
if C.to_value(self_val) != C.to_value(stack_val)
raise "verify_ctx: stack value was mapped to self, but values did not match:\n"\
"stack: #{stack_val.inspect}, self: #{self_val.inspect}"
end
in MapToLocal[local_idx]
local_val = jit.peek_at_local(local_idx)
if C.to_value(local_val) != C.to_value(stack_val)
raise "verify_ctx: stack value was mapped to local, but values did not match:\n"\
"stack: #{stack_val.inspect}, local: #{local_val.inspect}"
end
in MapToStack
# noop
end
# If the actual type differs from the learned type
assert_compatible(val_type, learned_type)
end
# Verify local variable types
local_table_size = jit.iseq.body.local_table_size
[local_table_size, MAX_TEMP_TYPES].min.times do |i|
learned_type = ctx.get_local_type(i)
local_val = jit.peek_at_local(i)
local_type = Type.from(local_val)
assert_compatible(local_type, learned_type)
end
end
def assert_compatible(actual_type, ctx_type)
if actual_type.diff(ctx_type) == TypeDiff::Incompatible
raise "verify_ctx: ctx type (#{ctx_type.type.inspect}) is incompatible with actual type (#{actual_type.type.inspect})"
end
end
def assert(cond)
unless cond
raise "'#{cond.inspect}' was not true"
end
end
def supported_platform?
return @supported_platform if defined?(@supported_platform)
@supported_platform = RUBY_PLATFORM.match?(/x86_64/).tap do |supported|
warn "warning: RJIT does not support #{RUBY_PLATFORM} yet" unless supported
end
end
end
end
Zerion Mini Shell 1.0